1
|
Liu L, Wang C, Liu F, Zhao H. Polymerization-Induced Proteinosome Formation Initiated by Artificial Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4456-4465. [PMID: 36926885 DOI: 10.1021/acs.langmuir.3c00121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cellular communication is essential for living cells to coordinate the individual cellular responses and make collective behaviors. In the past decade, the communications between artificial cells have aroused great interest due to the potential applications of the structures in bioscience and biotechnology. To mimic the cellular communication, artificial cell assisted synthesis of proteinosomes was studied in this research. Multienzyme proteinosomes with glucose oxidase (GOx) and horseradish peroxidase (HRP) decorated on the membranes were synthesized by the thermally triggered self-assembly approach. Free radicals produced in a cascade reaction taking place on the surfaces of the multienzyme proteinosomes initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of NIPAM at a temperature above LCST of PNIPAM in the presence of bovine serum albumin (BSA) or alcohol dehydrogenase (ADH)/acetaldehyde dehydrogenase (ALDH), and daughter proteinosomes with BSA or ADH/ALDH on the surfaces were fabricated. The structures of the GOx/HRP initiator proteinosomes, and the synthesized daughter proteinosomes were characterized with transmission electron microscopy, atomic force microscopy, fluorescence microscopy, dynamic light scattering, and micro-DSC. Enzyme activity assays demonstrate the high bioactivities of the enzymes on the surfaces of the initiator and the synthesized daughter proteinosomes.
Collapse
Affiliation(s)
- Luyang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Fang Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| |
Collapse
|
2
|
Cheung TH, Xue C, Kurtz DA, Shoichet MS. Protein Release by Controlled Desorption from Transiently Cationic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50560-50573. [PMID: 36703567 DOI: 10.1021/acsami.2c19877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Therapeutic release from hydrogels is traditionally controlled by encapsulation within nanoparticles; however, this strategy is limited for the release of proteins due to poor efficiency and denaturation. To overcome this problem, we designed an encapsulation-free release platform where negatively charged proteins are adsorbed to the exterior of transiently cationic nanoparticles, thus allowing the nanoparticles to be formulated separately from the proteins. Release is then governed by the change in nanoparticle surface charge from positive to neutral. To achieve this, we synthesized eight zwitterionic poly(lactide-block-carboxybetaine) copolymer derivatives and formulated them into nanoparticles with differing surface chemistry. The nanoparticles were colloidally stable and lost positive charge at rates dependent on the hydrolytic stability of their surface ester groups. The nanoparticles (NPs) were dispersed in a physically cross-linked hyaluronan-based hydrogel with one of three negatively charged proteins (transferrin, panitumumab, or granulocyte-macrophage colony-stimulating factor) to assess their ability to control release. For all three proteins, dispersing NPs within the gels resulted in significant attenuation of release, with the extent modulated by the hydrolytic stability of the surface groups. Release was rapid from fast-hydrolyzing ester groups, reduced with slow-hydrolyzing bulky ester groups, and very slow with nonhydrolyzing amide groups. When positively charged lysozyme was loaded into the nanocomposite gel, there was no significant attenuation of release compared to gel alone. These data demonstrate that electrostatic interactions between the protein and NP are the primary driver of protein release from the hydrogel. All released proteins retained bioactivity as determined with in vitro cell assays. This release strategy shows tremendous versatility and provides a promising new platform for controlled release of anionic protein therapeutics.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
| | - Daniel A Kurtz
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
3
|
Temperature Responsive Polymer Conjugate Prepared by "Grafting from" Proteins toward the Adsorption and Removal of Uremic Toxin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031051. [PMID: 35164316 PMCID: PMC8839407 DOI: 10.3390/molecules27031051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 01/28/2023]
Abstract
In this study, temperature-responsive polymer-protein conjugate was synthesized using a “grafting from” concept by introducing a chain transfer agent (CTA) into bovine serum albumin (BSA). The BSA-CTA was used as a starting point for poly(N-isopropylacrylamide) (PNIPAAm) through reversible addition-fragmentation chain transfer polymerization. The research investigations suggest that the thermally responsive behavior of PNIPAAm was controlled by the monomer ratio to CTA, as well as the amount of CTA introduced to BSA. The study further synthesized the human serum albumin (HSA)-PNIPAAm conjugate, taking the advantage that HSA can specifically adsorb indoxyl sulfate (IS) as a uremic toxin. The HSA-PNIPAAm conjugate could capture IS and decreased the concentration by about 40% by thermal precipitation. It was also revealed that the protein activity was not impaired by the conjugation with PNIPAAm. The proposed strategy is promising in not only removal of uremic toxins but also enrichment of biomarkers for early diagnostic applications.
Collapse
|
4
|
Chu S, Wang AL, Bhattacharya A, Montclare JK. Protein Based Biomaterials for Therapeutic and Diagnostic Applications. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2022; 4:012003. [PMID: 34950852 PMCID: PMC8691744 DOI: 10.1088/2516-1091/ac2841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Proteins are some of the most versatile and studied macromolecules with extensive biomedical applications. The natural and biological origin of proteins offer such materials several advantages over their synthetic counterparts, such as innate bioactivity, recognition by cells and reduced immunogenic potential. Furthermore, proteins can be easily functionalized by altering their primary amino acid sequence and can often be further self-assembled into higher order structures either spontaneously or under specific environmental conditions. This review will feature the recent advances in protein-based biomaterials in the delivery of therapeutic cargo such as small molecules, genetic material, proteins, and cells. First, we will discuss the ways in which secondary structural motifs, the building blocks of more complex proteins, have unique properties that enable them to be useful for therapeutic delivery. Next, supramolecular assemblies, such as fibers, nanoparticles, and hydrogels, made from these building blocks that are engineered to behave in a cohesive manner, are discussed. Finally, we will cover additional modifications to protein materials that impart environmental responsiveness to materials. This includes the emerging field of protein molecular robots, and relatedly, protein-based theranostic materials that combine therapeutic potential with modern imaging modalities, including near-infrared fluorescence spectroscopy (NIRF), single-photo emission computed tomography/computed tomography (SPECT/CT), positron emission tomography (PET), magnetic resonance imaging (MRI), and ultrasound/photoacoustic imaging (US/PAI).
Collapse
Affiliation(s)
- Stanley Chu
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
| | - Andrew L Wang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Biomedical Engineering, State University of New York Downstate Medical Center, Brooklyn, NY, USA
- College of Medicine, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Aparajita Bhattacharya
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Molecular and Cellular Biology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Brooklyn, NY, USA
- Department of Chemistry, NYU, New York, NY, USA
- Department of Biomaterials, NYU College of Dentistry, New York, NY, USA
- Department of Radiology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
5
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
6
|
Li Y, Liu L, Zhao H. Enzyme-catalyzed cascade reactions on multienzyme proteinosomes. J Colloid Interface Sci 2021; 608:2593-2601. [PMID: 34763887 DOI: 10.1016/j.jcis.2021.10.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
In this research, to mimic the structures and the functionalities of the organelles in living cells multienzyme proteinosomes with β-galactosidase (β-gal), glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surfaces are fabricated by hydrophobic-interaction induced self-assembly approach. To investigate the mechanism of the formation of proteinosomes, poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) and bovine serum albumin are employed in a model system and the study demonstrates that the hydrophobic interaction between the dehydrated polymer chains and the hydrophobic patches on the proteins plays a key role in the fabrication of the proteinosomes. Based on the model system, multienzyme proteinosomes with β-gal, GOx and HRP on the surfaces are fabricated through hydrophobic interaction between PDEGMA and enzyme molecules. Enzyme-catalyzed cascade reactions are performed on the surfaces of the proteinosomes, and the immobilized enzymes show higher bioactivities than the "free" enzymes, due to the direct transfer of the product as a substrate from one enzyme molecule to another. This research provides a unique method for the synthesis of multienzyme proteinosomes with improved bioactivities, and the biofunctional structures will find promising applications in medical and biological science.
Collapse
Affiliation(s)
- Yuwei Li
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China
| | - Li Liu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.
| |
Collapse
|
7
|
Hou C, Xu H, Jiang X, Li Y, Deng S, Zang M, Xu J, Liu J. Virus-Based Supramolecular Structure and Materials: Concept and Prospects. ACS APPLIED BIO MATERIALS 2021; 4:5961-5974. [PMID: 35006905 DOI: 10.1021/acsabm.1c00633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Rodlike and spherelike viruses are various monodisperse nanoparticles that can display small molecules or polymers with unique distribution following chemical modifications. Because of the monodisperse property, aggregates in synthetic protein-polymer nanoparticles could be eliminated, thus improving the probability for application in protein-polymer drug. In addition, the monodisperse virus could direct the growth of metal materials or inorganic materials, finding applications in hydrogel, drug delivery, and optoelectronic and catalysis materials. Benefiting from the advantages, the virus or viruslike particles have been widely explored in the field of supramolecular chemistry. In this review, we describe the modification and application of virus and viruslike particles in surpramolecular structures and biomedical research.
Collapse
Affiliation(s)
- Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Hanxin Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaojia Jiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Yijia Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Shengchao Deng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Mingsong Zang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
8
|
Liu F, Cai Y, Wang H, Yang X, Zhao H. Polymerization-induced proteinosome formation. J Mater Chem B 2021; 9:1406-1413. [PMID: 33464259 DOI: 10.1039/d0tb02635b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In recent years, the fabrication of well-organized proteinosomes has been a popular topic due to the potential applications of the structures in materials science and nanotechnology. A big challenge in the fabrication of proteinosomes is to maintain the structures and the functionalities of proteins on the proteinosomes. In this research, a new concept of polymerization-induced formation of proteinosomes is proposed. In thermal dispersion polymerization of N-isopropyl acrylamide (NIPAM) in the presence of bovine serum albumin (BSA), the growing PNIPAM chains experience phase transition from hydrated coils to dehydrated globules, and the dehydrated PNIPAM chains have hydrophobic interaction with BSA, leading to the formation of hollow proteinosomes. Kinetics studies indicate that there is a transition from the homogeneous polymerization of NIPAM in solution to the heterogeneous polymerization in the proteinosomes. Transmission electron microscopy, atomic force microscopy, confocal laser scanning microscopy and dynamic light scattering all demonstrate the formation of hollow structures. The results of circular dichroism spectroscopy indicate that the secondary structure of BSA remains unchanged in the polymerization process. The formation of proteinosomes is reversible. Upon cooling of the solution to a temperature below the phase transition temperature of PNIPAM, the proteinosomes are dissociated due to the absence of the hydrophobic interaction. The proteinosomes can be used in the encapsulation of hydrophilic compounds in aqueous solution. In this research, not only BSA but also ovalbumin (OVA) is used as a model protein for the fabrication of proteinosomes by the polymerization-induced approach.
Collapse
Affiliation(s)
- Fang Liu
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Yaqian Cai
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Huan Wang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Xinlin Yang
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| | - Hanying Zhao
- College of Chemistry and Key Laboratory of Functional Polymer Materials of the Ministry of Education, Nankai University, Weijing Road #94, Tianjin 300071, China.
| |
Collapse
|
9
|
Figueira FL, Wu YY, Zhou YN, Luo ZH, Van Steenberge PHM, D'hooge DR. Coupled matrix kinetic Monte Carlo simulations applied for advanced understanding of polymer grafting kinetics. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00407c] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An innovative coupled matrix-based Monte Carlo (CMMC) concept has been applied to successfully assess the detailed description of the molecular build-up of linear and non-linear chains in the free-radical induced grafting of linear precursors chains.
Collapse
Affiliation(s)
| | - Yi-Yang Wu
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yin-Ning Zhou
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Zheng-Hong Luo
- Department of Chemical Engineering
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- Belgium
- Centre for Textile Science and Engineering (CTSE)
- Ghent University
| |
Collapse
|