1
|
Bian Z, Bao T, Sun X, Wang N, Mu Q, Jiang T, Yu Z, Ding J, Wang T, Zhou Q. Machine Learning Tools to Assist the Synthesis of Antibacterial Carbon Dots. Int J Nanomedicine 2024; 19:5213-5226. [PMID: 38855729 PMCID: PMC11162209 DOI: 10.2147/ijn.s451680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/03/2024] [Indexed: 06/11/2024] Open
Abstract
Introduction The emergence and rapid spread of multidrug-resistant bacteria (MRB) caused by the excessive use of antibiotics and the development of biofilms have been a growing threat to global public health. Nanoparticles as substitutes for antibiotics were proven to possess substantial abilities for tackling MRB infections via new antimicrobial mechanisms. Particularly, carbon dots (CDs) with unique (bio)physicochemical characteristics have been receiving considerable attention in combating MRB by damaging the bacterial wall, binding to DNA or enzymes, inducing hyperthermia locally, or forming reactive oxygen species. Methods Herein, how the physicochemical features of various CDs affect their antimicrobial capacity is investigated with the assistance of machine learning (ML) tools. Results The synthetic conditions and intrinsic properties of CDs from 121 samples are initially gathered to form the raw dataset, with Minimum inhibitory concentration (MIC) being the output. Four classification algorithms (KNN, SVM, RF, and XGBoost) are trained and validated with the input data. It is found that the ensemble learning methods turn out to be the best on our data. Also, ε-poly(L-lysine) CDs (PL-CDs) were developed to validate the practical application ability of the well-trained ML models in a laboratory with two ensemble models managing the prediction. Discussion Thus, our results demonstrate that ML-based high-throughput theoretical calculation could be used to predict and decode the relationship between CD properties and the anti-bacterial effect, accelerating the development of high-performance nanoparticles and potential clinical translation.
Collapse
Affiliation(s)
- Zirui Bian
- Department of Bone, Huangdao District Central Hospital, Qingdao, People’s Republic of China
| | - Tianzhe Bao
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| | - Xuequan Sun
- Weifang Eye Institute, Weifang Eye Hospital, Zhengda Guangming Eye Group, Weifang, People’s Republic of China
- Zhengda Guangming International Eye Research Center, Qingdao Zhengda Guangming Eye Hospital, Qingdao University, Qingdao, People’s Republic of China
| | - Ning Wang
- Department of Bone, Huangdao District Central Hospital, Qingdao, People’s Republic of China
| | - Qian Mu
- Department of Biomaterials, LongScience Biological (Qingdao) Co, LTD, Qingdao, People’s Republic of China
| | - Ting Jiang
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, People’s Republic of China
| | - Zhongxiang Yu
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao University, Qingdao, People’s Republic of China
| | - Junhang Ding
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| | - Ting Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Qihui Zhou
- Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, People’s Republic of China
| |
Collapse
|
2
|
Wang X, Hu J, Wei H, Li Z, Liu J, Zhang J, Yang S. Ultra-fast solvent-free protocol remodels the large-scale synthesis of carbon dots for nucleolus-targeting and white light-emitting diodes. J Colloid Interface Sci 2023; 649:785-794. [PMID: 37385043 DOI: 10.1016/j.jcis.2023.06.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Carbon dots (CDs) provides unprecedented opportunities for optical applications due its unique properties, but the energy-extensive consumption, high-risk factor and time-consuming synthesis procedure greatly hinders its industrialization process. Herein, we proposed an ultra-low energy consumption solvent-free synthetic strategy for fast preparing green/red fluorescence carbon dots (G-/R-CDs) using m-/o-phenylenediamine and primary amine hydrochloride. The involvement of primary amine hydrochloride can improve the formation rate of G-CDs/R-CDs through effectively absorbing microwave energy and providing acid react environment. The developed CDs exhibit good fluorescence efficiency, optical stability and membrane permeability for dexterous bioimaging in vivo. Based on inherently high nitrogen content, the G-CDs/R-CDs possess excellent nuclear/nucleolus targeting ability, and were successfully applied for screening cancer and normal cells. Furthermore, the G-CDs/R-CDs were further applied for fabricating high-safety and high-color rendering index white light-emitting diodes, providing a perfect candidate for indoor lighting. This study opens up new horizons for advancing practical applications of CDs in related fields of biology and optics.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jinshuang Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Hua Wei
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zihan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Jian Liu
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Shenghong Yang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
3
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
4
|
Facile synthesis of red-emissive carbon dots with theoretical understanding for cellular imaging. Colloids Surf B Biointerfaces 2022; 220:112869. [DOI: 10.1016/j.colsurfb.2022.112869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
|
5
|
Trapani D, Macaluso R, Crupi I, Mosca M. Color Conversion Light-Emitting Diodes Based on Carbon Dots: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5450. [PMID: 35955386 PMCID: PMC9369759 DOI: 10.3390/ma15155450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/08/2023]
Abstract
This paper reviews the state-of-the-art technologies, characterizations, materials (precursors and encapsulants), and challenges concerning multicolor and white light-emitting diodes (LEDs) based on carbon dots (CDs) as color converters. Herein, CDs are exploited to achieve emission in LEDs at wavelengths longer than the pump wavelength. White LEDs are typically obtained by pumping broad band visible-emitting CDs by an UV LED, or yellow-green-emitting CDs by a blue LED. The most important methods used to produce CDs, top-down and bottom-up, are described in detail, together with the process that allows one to embed the synthetized CDs on the surface of the pumping LEDs. Experimental results show that CDs are very promising ecofriendly candidates with the potential to replace phosphors in traditional color conversion LEDs. The future for these devices is bright, but several goals must still be achieved to reach full maturity.
Collapse
Affiliation(s)
| | | | | | - Mauro Mosca
- Thin-Films Laboratory, Department of Engineering, University of Palermo, Viale delle Scienze, Bdg. 9, I-90129 Palermo, Italy
| |
Collapse
|
6
|
Liuye S, Cui S, Lu M, Pu S. Construction of a photo-controlled fluorescent switching with diarylethene modified carbon dots. NANOTECHNOLOGY 2022; 33:405705. [PMID: 34991084 DOI: 10.1088/1361-6528/ac48ba] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Photo-controlled fluorescent switching is of great utility in fluorescence sensors, reversible data storage, and logic circuit, based on their modifiable emission intensity and spectra. In this work, a novel photo-controlled reversible fluorescent switching system was constructed based on photochromic diarylethene (DT) molecular modified fluorescent carbon dots (CDs). The fluorescent CDs acted as fluorescent donors and the photochromic diarylethene molecular functioned as acceptors in this fluorescent switching system. The fluorescence modulation efficiency of the fluorescent switching was determined to be 97.1%. The result was attributable to Förster resonance energy transfer between the CDs and the diarylethene molecular. The fluorescent switching could undergo 20 cycles without significant decay.
Collapse
Affiliation(s)
- Shiqi Liuye
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Shiqiang Cui
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Mengmeng Lu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
- Department of Ecology and environment, Yuzhang Normal University, Nanchang 330103, People's Republic of China
| |
Collapse
|
7
|
Tang H, Tang Y, Xiao M, Zhu H, Guo M. Study on Microwave Synthesis Mechanism of Carbon Dots Based on NMR Characterization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Fernandes S, Esteves da Silva JCG, Pinto da Silva L. Life Cycle Assessment-Based Comparative Study between High-Yield and "Standard" Bottom-Up Procedures for the Fabrication of Carbon Dots. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3446. [PMID: 35629474 PMCID: PMC9145381 DOI: 10.3390/ma15103446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials with remarkable properties that can be produced from a wide variety of synthesis routes. Given that "standard" bottom-up procedures are typically associated with low synthesis yields, different authors have been trying to devise alternative high-yield fabrication strategies. However, there is a doubt if sustainability-wise, the latter should be really preferred to the former. Herein, we employed a Life Cycle Assessment (LCA) approach to compare and understand the environmental impacts of high-yield and "standard" bottom-up strategies, by applying different life cycle impact assessment (LCIA) methods. These routes were: (1) production of hydrochar, via the hydrothermal treatment of carbon precursors, and its alkaline peroxide treatment into high-yield CDs; (2) microwave treatment of carbon precursors doped with ethylenediamine; (3) and (6) thermal treatment of carbon precursor and urea; (4) hydrothermal treatment of carbon precursor and urea; (5) microwave treatment of carbon precursor and urea. For this LCA, four LCIA methods were used: ReCiPe, Greenhouse Gas Protocol, AWARE, and USEtox. Results identified CD-5 as the most sustainable synthesis in ReCiPe, Greenhouse Gas Protocol, and USEtox. On the other hand, in AWARE, the most sustainable synthesis was CD-1. It was possible to conclude that, in general, high-yield synthesis (CD-1) was not more sustainable than "standard" bottom-up synthesis, such as CD-5 and CD-6 (also with relatively high-yield). More importantly, high-yield synthesis (CD-1) did not generate much lower environmental impacts than "standard" approaches with low yields, which indicates that higher yields come with relevant environmental costs.
Collapse
Affiliation(s)
- Sónia Fernandes
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.F.); (J.C.G.E.d.S.)
| | - Joaquim C. G. Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.F.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environmental and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; (S.F.); (J.C.G.E.d.S.)
- LACOMEPHI, GreenUPorto, Department of Geosciences, Environmental and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| |
Collapse
|
9
|
Tang H, Tang Y, Zhu H, Xiao M, Guo M. Nitrogen-doped carbon dots based on arginine and maleic acid for fabrication of PVA composite films and iron fluorescence probes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Yang F, Lin D, Pan L, Zhu J, Shen J, Yang L, Jiang C. Portable Smartphone Platform Based on a Single Dual-Emissive Ratiometric Fluorescent Probe for Visual Detection of Isopropanol in Exhaled Breath. Anal Chem 2021; 93:14506-14513. [PMID: 34609831 DOI: 10.1021/acs.analchem.1c03280] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The components in the exhaled breath have been confirmed to be related to certain diseases, especially studies have shown that isopropanol (IPA) might be closely associated with illnesses such as lung cancer, and are considered as a biomarker. Herein, we designed a portable smartphone platform based on a chemically synthesized ratiometric fluorescent probe for real-time/on-site, sensitive, and quantitative visual detection of IPA in exhaled breath. The fluorescent probe was fabricated by a nicotinamide adenine dinucleotide (NAD+) functional modified onto fluorescent internal standard red carbon dots (RCDs). Whereas, IPA can convert NAD+ into reduced nicotinamide adenine dinucleotide (NADH) through an enzymatic reaction of secondary alcohol dehydrogenase (S-ADH). The electron transfer from IPA to NAD+ emitted a blue emission of NADH, which displayed consecutive color changes from red to light blue. Under optimum conditions, the fluorescent probe shows sensitive responses to IPA with a detection limit as low as 4.45 nM. Moreover, combined with the smartphone color recognizer application (APP), the ratio of fluorescence intensity response was recorded on a blue channel (B)/red channel (R), which has been employed for the visual quantitative determination of IPA with a detection limit of 8.34 nM and a recovery rate of 90.65-110.09% (RSD ≤ 4.83). The method reported here provides a convenient pathway for real-time/on-site and visual detection of IPA in exhaled air and is expected to extend the application of investigation of potential volatile biomarkers for preliminary monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Dan Lin
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Lei Pan
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jiawei Zhu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jianjun Shen
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| |
Collapse
|
11
|
Huo X, Shen H, Liu R, Shao J. Solvent Effects on Fluorescence Properties of Carbon Dots: Implications for Multicolor Imaging. ACS OMEGA 2021; 6:26499-26508. [PMID: 34661005 PMCID: PMC8515583 DOI: 10.1021/acsomega.1c03731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/10/2021] [Indexed: 05/25/2023]
Abstract
Carbon dots (CDs) are synthesized by the solvothermal method with four kinds of solvents including water, dimethylformamide (DMF), ethanol, and acetic acid (AA). The aqueous solutions of the above CDs emit multiple colors of blue (470 nm), green (500 nm), yellow (539 nm), and orange (595 nm). The structures, sizes, and chemical composition of the CDs are characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and X-ray photoelectron spectroscopy (XPS). The optical properties of multicolored CDs are analyzed by UV-vis absorption and photoluminescence (PL) spectra. It has been revealed that DMF is the key solvent to synthesized CDs for the red shift of fluorescence emission, which could be enhanced by adding an AA solvent. The structures of functional groups such as the contents of graphitic N in carbon cores and oxygen-containing functional groups on the surface of CDs are affected by these four solvents. According to the oxidation and selective reduction of NaBH4, the implication for multicolor imaging has been discussed based on the COOH, C-O-C, and C=O functional groups.
Collapse
Affiliation(s)
- Xiaomin Huo
- College
of Materials Science and Technology, Jiangsu Key Laboratory of Materials
and Technology for Energy Conversion, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
- Dalian
Inspection, Testing and Certification Group
Co., Ltd., Dalian 116021, P. R. China
| | - Honglie Shen
- College
of Materials Science and Technology, Jiangsu Key Laboratory of Materials
and Technology for Energy Conversion, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Rui Liu
- College
of Materials Science and Technology, Jiangsu Key Laboratory of Materials
and Technology for Energy Conversion, Nanjing
University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Jing Shao
- Department
of Material Physics, Faculty of Science, Bengbu University, Bengbu 233030, P. R. China
| |
Collapse
|
12
|
Hu Y, Ji W, Qiao J, Li H, Zhang Y, Luo J. Simple and Sensitive Multi-components Detection Using Synthetic Nitrogen-doped Carbon Dots Based on Soluble Starch. J Fluoresc 2021; 31:1379-1392. [PMID: 34156612 DOI: 10.1007/s10895-021-02764-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Although carbon dots (CDs) as fluorescent sensors have been widely exploited, multi-component detection using CDs without tedious surface modification is always a challenging task. Here, two kinds of nitrogen-doped CDs (NCD-m and NCD-o) based on soluble starch (SS) as carbon source were prepared through one-pot hydrothermal process using m-phenylenediamine and o-phenylenediamine as nitrogenous dopant respectively. Through fluorescence "on-off" mechanism of CDs, NCD-m and NCD-o could be used as a fluorescence sensor for detection of Fe 3+ and Ag + with LOD of 0.25 and 0.51 μM, respectively. Additionally, NCD-m could be used for indirect detection of ascorbic acid (AA) with LOD of 5.02 μM. Moreover, fluorescence intensity of NCD-m also exhibited the sensitivity to pH change from 2 to 13. More importantly, Both NCD-m and NCD-o had potential application for analysis of complicated real samples such as tap water, Vitamin C tablets and orange juice. Ultimately, the small size of NCD-m could contribute to reinforcing intracellular endocytosis, which allowed them to be used for bacteria imaging. Obviously, these easily obtainable nitrogen-doped CDs were able to be used for multi-components detection. Strategy for synthesis of nitrogen-doped carbon dots (NCDs) and a schematic for fabrication of as-prepared NCDs for detection of Fe 3+, Ag + and ascorbic acid (AA).
Collapse
Affiliation(s)
- Yuanyuan Hu
- Medical College, China Three Gorges University, Yichang, 443002, China.
- Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine (Approved By State Administration of Traditional Chinese Medicine of China, SATCM), China Three Gorges University, Yichang, 443002, China.
| | - Wenxuan Ji
- Medical College, China Three Gorges University, Yichang, 443002, China
| | - Jinjuan Qiao
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Heng Li
- Department of Medical Laboratory, Weifang Medical University, Weifang, 261053, China
| | - Yun Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Luo
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, 443003, China.
| |
Collapse
|
13
|
Yang F, Yang L, Xu L, Guo W, Pan L, Zhang C, Xu S, Zhang N, Yang L, Jiang C. 3D-printed smartphone-based device for fluorimetric diagnosis of ketosis by acetone-responsive dye marker and red emissive carbon dots. Mikrochim Acta 2021; 188:306. [PMID: 34453195 DOI: 10.1007/s00604-021-04965-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
A portable smartphone device is reported that uses 3D printing technology for the primary diagnosis of diseases by detecting acetone. The key part of the device consists of red carbon dots (RCDs), which are used as internal standards, and a sensing reagent (3-N,N-(diacethydrazide)-9-ethylcarbazole (2-HCA)) for acetone. With an excitation wavelength of 360 nm, the emission wavelengths of 2-HCA and RCDs are 443 nm and 619 nm, respectively. 2-HCA effectively captures acetone to form a nonfluorescent acylhydrazone via a condensation reaction occurring in aqueous solution, resulting in obvious color changes from blue-violet to dark red. The detection limit for acetone is 2.62 μM (~ 0.24 ppm). This is far lower than the ketone content in normal human blood (≤ 0.50 mM) and the acetone content in human respiratory gas (≤ 1.80 ppm). The device has good recovery rates for acetone detection in blood and exhaled breath, which are 90.56-109.98% (RSD ≤ 5.48) and 92.80-108.00% (RSD ≤ 5.07), respectively. The method designed here provides a reliable way to provide health warnings by visually detecting markers of ketosis/diabetes in blood or exhaled breath. The portable smart phone device visually detects ketosis/diabetes markers in the blood or exhaled breath through the nucleophilic addition reaction, which effectively captures acetone to form nonfluorescent acyl groups. This will be a reliable tool to warn human health.
Collapse
Affiliation(s)
- Fan Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Linlin Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.,Key Laboratory of Biomimetic Sensor and Detecting Technology of Anhui Province, School of Materials and Chemical Engineering, West Anhui University, Lu'an, 237012, Anhui, China
| | - Longchang Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Wei Guo
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Pan
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.,Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Chuanglin Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Shihao Xu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Ningning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Liang Yang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| | - Changlong Jiang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China. .,State Key Laboratory of Transducer Technology, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
14
|
Fernandes S, Esteves da Silva JCG, Pinto da Silva L. Comparative life cycle assessment of high-yield synthesis routes for carbon dots. NANOIMPACT 2021; 23:100332. [PMID: 35559833 DOI: 10.1016/j.impact.2021.100332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 05/25/2023]
Abstract
Carbon dots (CDs) are carbon-based nanomaterials with advantageous luminescent properties, making them promising alternatives to other molecular and nanosized fluorophores. However, the development of CDs is impaired by the low synthesis yield of standard fabrication strategies, making high-yield strategies essential. To help future studies to focus on cleaner production strategies, we have employed a Life Cycle Assessment (LCA) to compare and understand the environmental impacts of available routes for the high-yield synthesis of carbon dots. These routes were: (1) production of hydrochar, via hydrothermal treatment of carbon precursors, and its alkaline-peroxide treatment into high-yield carbon dots; (2) thermal treatment of carbon precursors mixed in a eutectic mixture of salts. Results show that the first synthesis route is associated with the lowest environmental impacts. This is attributed to the absence of the mixture of salts in the first synthesis route, which offsets its higher electricity consumption. Sensitivity analysis showed that the most critical parameter in the different synthetic strategies is the identity of the carbon precursor, with electricity being also relevant for the first synthesis route. Nevertheless, the use of some carbon precursors (as citric acid) with higher associated environmental impacts may be justified by their beneficial role in increasing the luminescent performance of carbon dots. Thus, the first synthesis route is indicated to be the most environmental benign and should be used as a basis in future studies aimed to the cleaner and high-yield production of carbon dots.
Collapse
Affiliation(s)
- Sónia Fernandes
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; LACOMEPHI, GreenUPorto, Department of Geosciences, Environmental and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal; LACOMEPHI, GreenUPorto, Department of Geosciences, Environmental and Territorial Planning, Faculty of Sciences of University of Porto, R. Campo Alegre 697, 4169-007 Porto, Portugal.
| |
Collapse
|
15
|
Han HH, Kang H, Kim SJ, Pal R, Kumar ATN, Choi HS, Hahn SK. Fluorescent nanodiamond - hyaluronate conjugates for target-specific molecular imaging. RSC Adv 2021; 11:23073-23081. [PMID: 34262698 PMCID: PMC8240508 DOI: 10.1039/d1ra03936a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022] Open
Abstract
Despite wide investigation on molecular imaging contrast agents, there are still strong unmet medical needs to enhance their signal-to background ratio, brightness, photostability, and biocompatibility with multimodal imaging capability. Here, we assessed the feasibility of fluorescent nanodiamonds (FNDs) as carbon based photostable and biocompatible materials for molecular imaging applications. Because FNDs have negatively charged nitrogen vacancy (NV) centers, they can emit bright red light. FNDs were conjugated to hyaluronate (HA) for target-specific molecular imaging. HA is a biocompatible, biodegradable, and linear polysaccharide with abundant HA receptors in the liver, enabling liver targeted molecular imaging. In vitro cell viability tests revealed the biocompatibility of HA-FND conjugates and the competitive cellular uptake test confirmed their target-specific intracellular delivery to HepG2 cells with HA receptors. In addition, in vivo fluorescence lifetime (FLT) assessment revealed the imaging capability of FNDs and HA-FND conjugates. After that, we could confirm the statistically significant liver-targeted delivery of HA-FND conjugates by in vivo imaging system (IVIS) analysis and ex vivo biodistribution tests in various organs. The renal clearance test and histological analysis corroborated the in vivo biocompatibility and safety of HA-FND conjugates. All these results demonstrated the feasibility of HA-FND conjugates for further molecular imaging applications.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| | - Rahul Pal
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Anand T N Kumar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital & Harvard Medical School 149 13th Steet Boston MA 02114 USA
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH) 77 Cheongam-ro, Nam-gu, Pohang Gyeongbuk KR 37673 Korea +82 54 279 2399 +82 54 279 2159
| |
Collapse
|
16
|
Li T, Shi W, Shuang E, Mao Q, Chen X. Green preparation of carbon dots with different surface states simultaneously at room temperature and their sensing applications. J Colloid Interface Sci 2021; 591:334-342. [PMID: 33618291 DOI: 10.1016/j.jcis.2021.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022]
Abstract
It is a considerable challenge to develop environmental friendly, low-cost methodology for green preparation of carbon dots (CDs). Herein, CDs with different surface states are prepared using o-phenylenediamine (o-PD) and hydroquinone (HQ) as precursors via oxidation/polymerization and Schiff base reaction at room temperature without additional oxidizing agents. Two CDs products (YCDs and GCDs) are obtained after separation with silica gel column chromatography based on their polarity differences. The different surface states endow these two CDs with different properties. The rich NO2 and OH groups on the surface of YCDs contribute to a narrow band gap, resulting in the red-shifted photoluminescence (PL) emission of this CDs product, making it a sensitive probe for the detection of toxic pollutant p-nitrophenol (p-NP) attributed to the inner filter effect, along with a detection limit of 0.08 μmol/L. GCDs are characterized with abundant surficial NH2 groups, and can be used as a potential probe to detect H2O content in D2O, giving a detection limit of 0.17 vol%.
Collapse
Affiliation(s)
- Tianze Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wei Shi
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuang E
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Quanxing Mao
- College of Chemistry, Liaoning University, Shenyang 110036, China.
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
17
|
Wen Q, Zheng Y, Liu W, Wang Q. Stepwise Assembly Protocols for the Rational Design of Lanthanide Functionalized Carbon Dots-Hydrogel and its Sensing Evaluation. J Fluoresc 2021; 31:695-702. [PMID: 33582949 DOI: 10.1007/s10895-021-02694-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/01/2021] [Indexed: 11/26/2022]
Abstract
Inorganic-organic optical probe based on lanthanide emission will provide a new way for specific applications. In this work, sarcosine and urea are selected as raw materials to synthesize carbon dots with cyan-emissive color. In the next step, indicator components (Ethylene Diamine Tetraacetic Acid and lanthanide ions) are incorporated onto carbon quantum dots (CQDs) and the flexible alginate hydrogel is employed as the host to accommodate the emissive species. The soft material can exhibit typical red and green emissions. Its luminescence is responsive to calcium ions and the detection limit has been calculated to be 0.84 μM and 0.92 μM respectively. Such optical device can be employed as a portable probe in a variety of scientific fields due to its convenience and flexibility.
Collapse
Affiliation(s)
- Qin Wen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yuhui Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
| | - Wanqiang Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Qianming Wang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China.
- Institute for Advanced Materials, South China Academy of Advanced Optoelectronics and Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Sun B, Wu F, Zhang Q, Chu X, Wang Z, Huang X, Li J, Yao C, Zhou N, Shen J. Insight into the effect of particle size distribution differences on the antibacterial activity of carbon dots. J Colloid Interface Sci 2020; 584:505-519. [PMID: 33129160 DOI: 10.1016/j.jcis.2020.10.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) have a profound effect on elimination of bacteria, fungi, and viruses, but the lack of an exact mechanism to interact with bacterial cells limits their development. Herein, we separated the CDs derived from chlorhexidine gluconate into three groups with uniformly small-scale, middle-scale, and large-scale particle sizes by using different molecular weight cut-off membranes. These positively charged particles exhibit significant antibacterial activity against the Gram-negative bacteria Escherichia coli and the Gram-positive bacteria Staphylococcus aureus; they can cause an increase in bacterial cell permeability, synergistic destabilization, and broken integrity of the plasma membrane. Impressively, we found that antibacterial activity increases as the size of the CDs decreases. This phenomenon may stem from the differences in cellular uptake and distribution of CDs in the plasma membrane or restriction between the polar functional group and DNA molecule. Our study of the size effect as a target may improve the understanding of killing microorganisms by antibacterial CD drugs.
Collapse
Affiliation(s)
- Baohong Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Fan Wu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zhixuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinrong Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Jie Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Cheng Yao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|