1
|
Karnis I, Krasanakis F, Sygellou L, Rissanou AN, Karatasos K, Chrissopoulou K. Varying the degree of oxidation of graphite: effect of oxidation time and oxidant mass. Phys Chem Chem Phys 2024; 26:10054-10068. [PMID: 38482933 DOI: 10.1039/d3cp05268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In this work, we employ a fast and less toxic modified Hummers' method to develop graphene oxide (GO) with varying degrees of oxidation and investigate the effect of the latter on the structure and the thermal properties of the synthesized materials. Two different key parameters, the time of the oxidation reaction and the mass of the oxidation agent, were systematically altered in order to fine tune the oxidation degree. All graphene oxides were characterized by a plethora of experimental techniques, like X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) as well as infrared spectroscopy (IR) and X-ray photoelectron spectroscopy (XPS) for their structural, thermal and chemical identification. The results revealed that for a certain amount of oxidant, the time does not affect the final degree of oxidation of the materials, at least for the examined reaction times, because very similar structural patterns and thermal properties were obtained. At the same time, the oxygen-containing functional groups were found very similar. On the other hand, the degree of oxidation was found highly dependent on the mass of the oxidizing agent. XRD analysis showed a systematic increase of the interlayer distance of the synthesized GOs with the increase of the oxidant mass, whereas both the enthalpy of reduction and the % weight loss were increased. Moreover, XPS measurements provided a quantitative evaluation of the amount of carbon and oxygen in the materials; the increase of the oxidant mass led to a decrease of the total carbon content with the concurrent increase of the total oxygen amount.
Collapse
Affiliation(s)
- Ioannis Karnis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
- Department of Chemistry, University of Crete, Heraklion Crete, Greece
| | - Fanourios Krasanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
| | - Labrini Sygellou
- Institute of Chemical Engineering Studies, Foundation for Research and Technology-Hellas, Stadiou Str., 26504 Patras, Greece
| | - Anastassia N Rissanou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
- Institute of Theoretical and Physical Chemistry, National Hellenic Research Foundation, 48 Vassileos Konstantinou Ave, Athens 11635, Greece
| | - Konstantinos Karatasos
- Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kiriaki Chrissopoulou
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1527, Heraklion Crete 711 10, Greece.
| |
Collapse
|
2
|
Goldie S, Degiacomi MT, Jiang S, Clark SJ, Erastova V, Coleman KS. Identification of Graphene Dispersion Agents through Molecular Fingerprints. ACS NANO 2022; 16:16109-16117. [PMID: 36166830 PMCID: PMC9620402 DOI: 10.1021/acsnano.2c04406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The scalable production and dispersion of 2D materials, like graphene, is critical to enable their use in commercial applications. While liquid exfoliation is commonly used, solvents such as N-methyl-pyrrolidone (NMP) are toxic and difficult to scale up. However, the search for alternative solvents is hindered by the intimidating size of the chemical space. Here, we present a computational pipeline informing the identification of effective exfoliation agents. Classical molecular dynamics simulations provide statistical sampling of interactions, enabling the identification of key molecular descriptors for a successful solvent. The statistically representative configurations from these simulations, studied with quantum mechanical calculations, allow us to gain insights onto the chemophysical interactions at the surface-solvent interface. As an exemplar, through this pipeline we identify a potential graphene exfoliation agent 2-pyrrolidone and experimentally demonstrate it to be as effective as NMP. Our workflow can be generalized to any 2D material and solvent system, enabling the screening of a wide range of compounds and solvents to identify safer and cheaper means of producing dispersions.
Collapse
Affiliation(s)
- Stuart
J. Goldie
- Department
of Chemistry, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Matteo T. Degiacomi
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Shan Jiang
- Department
of Chemistry, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Stewart J. Clark
- Department
of Physics, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| | - Valentina Erastova
- School
of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United Kingdom
| | - Karl S. Coleman
- Department
of Chemistry, Durham University, South Road, Durham, DH1 3LE, United
Kingdom
| |
Collapse
|
3
|
Ikram R, Shamsuddin SAA, Mohamed Jan B, Abdul Qadir M, Kenanakis G, Stylianakis MM, Anastasiadis SH. Impact of Graphene Derivatives as Artificial Extracellular Matrices on Mesenchymal Stem Cells. Molecules 2022; 27:379. [PMID: 35056690 PMCID: PMC8781794 DOI: 10.3390/molecules27020379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/29/2021] [Accepted: 01/04/2022] [Indexed: 02/04/2023] Open
Abstract
Thanks to stem cells' capability to differentiate into multiple cell types, damaged human tissues and organs can be rapidly well-repaired. Therefore, their applicability in the emerging field of regenerative medicine can be further expanded, serving as a promising multifunctional tool for tissue engineering, treatments for various diseases, and other biomedical applications as well. However, the differentiation and survival of the stem cells into specific lineages is crucial to be exclusively controlled. In this frame, growth factors and chemical agents are utilized to stimulate and adjust proliferation and differentiation of the stem cells, although challenges related with degradation, side effects, and high cost should be overcome. Owing to their unique physicochemical and biological properties, graphene-based nanomaterials have been widely used as scaffolds to manipulate stem cell growth and differentiation potential. Herein, we provide the most recent research progress in mesenchymal stem cells (MSCs) growth, differentiation and function utilizing graphene derivatives as extracellular scaffolds. The interaction of graphene derivatives in human and rat MSCs has been also evaluated. Graphene-based nanomaterials are biocompatible, exhibiting a great potential applicability in stem-cell-mediated regenerative medicine as they may promote the behaviour control of the stem cells. Finally, the challenges, prospects and future trends in the field are discussed.
Collapse
Affiliation(s)
- Rabia Ikram
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Badrul Mohamed Jan
- Department of Chemical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | | - George Kenanakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
- Department of Nursing, Faculty of Health Sciences, Hellenic Mediterranean University, GR-71410 Heraklion, Greece
| | - Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, GR-70013 Heraklion, Greece; (G.K.); (S.H.A.)
| |
Collapse
|
4
|
Gelatin reduced Graphene Oxide Nanosheets as Kartogenin Nanocarrier Induces Rat ADSCs Chondrogenic Differentiation Combining with Autophagy Modification. MATERIALS 2021; 14:ma14051053. [PMID: 33668133 PMCID: PMC7956601 DOI: 10.3390/ma14051053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/19/2022]
Abstract
Biocompatible reduced graphene oxide (rGO) could deliver drugs for synergistically stimulating stem cells directed differentiation with influences on specific cellular activities. Here, we prepared a biodegradable gelatin reduced graphene oxide (rGO@Ge) to evaluate its functions in promoting rat adipose derived mesenchymal stem cells (ADSCs) chondrogenic differentiation through delivering kartogenin (KGN) into the stem cell efficiently. The optimum KGN concentration (approximately 1 μM) that promoted the proliferation and chondrogenic differentiation of ADSCs was clarified by a series of experiments, including immunofluorescent (IF) staining (Sox-9, Col II), alcian blue (Ab) staining, toluidine blue (Tb) staining and real-time quantitative PCR analysis of the chondrogenic markers. Meanwhile, the biocompatibility of rGO@Ge was evaluated to clearly define the nonhazardous concentration range, and the drug loading and releasing properties of rGO@Ge were tested with KGN for its further application in inducing ADSCs chondrogenic differentiation. Furthermore, the mechanism of rGO@Ge entering ADSCs was investigated by the different inhibitors that are involved in the endocytosis of the nanocarrier, and the degradation of the rGO@Ge in ADSCs was observed by transmission electron microscopy (TEM). The synergistic promoting effect of rGO@Ge nanocarrier on ADSCs chondrogenesis with KGN was also studied by the IF, Ab, Tb stainings and PCR analysis of the chondrogenic markers. Finally, the intracellular Reactive Oxygen Species (ROS) and autophagy induced by KGN/rGO@Ge complex composites were tested in details for clarification on the correlation between the autophagy and chondrogenesis in ADSCs induced by rGO@Ge. All the results show that rGO@Ge as a biocompatible nanocarrier can deliver KGN into ADSCs for exerting a pro-chondrogenic effect and assist the drug to promote ADSCs chondrogenesis synergistically through modification of the autophagy in vitro, which promised its further application in repairing cartilage defect in vivo.
Collapse
|
5
|
Kaleli H, Demirtaş S, Uysal V, Karnis I, Stylianakis MM, Anastasiadis SH, Kim DE. Tribological Performance Investigation of a Commercial Engine Oil Incorporating Reduced Graphene Oxide as Additive. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:386. [PMID: 33546353 PMCID: PMC7913578 DOI: 10.3390/nano11020386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 01/01/2023]
Abstract
We investigated the tribological behavior of commercialized, fully synthetic engine oil upon the incorporation of reduced graphene oxide in seven different concentrations between 0.01 and 0.2 wt %. Stability of the prepared samples was assessed by turbidimetry and dynamic light scattering measurements, and their tribological properties through a reciprocating tribometer, using a steel ball on special cut steel blocks. The addition of 0.02 wt % of reduced graphene oxide led to an improvement of the tribological behavior compared to the pristine engine oil, by significantly lowering the friction coefficient by 5% in the boundary lubrication regime. Both the surfaces and the reduced graphene oxide additive were thoroughly characterized by microscopic and optical spectroscopy techniques. We also verified that a protective layer was formed between the worn surfaces, due to the presence of reduced graphene oxide. Carbon accumulation and various additive elements such as Ca, Zn, S and P were detected on the rubbing surfaces of both the ball and the block through energy-dispersive X-ray spectroscopy. Finally, it was shown that the wear scar diameter on the surface of the steel ball was lower by 3%, upon testing the engine oil sample containing reduced graphene oxide at concentration 0.02 wt %, compared to the control sample.
Collapse
Affiliation(s)
- Hakan Kaleli
- Faculty of Mechanical Engineering, Automotive Division, Yildiz Technical University, Besiktas, Yildiz, 34349 Istanbul, Turkey; (S.D.); (V.U.)
| | - Selman Demirtaş
- Faculty of Mechanical Engineering, Automotive Division, Yildiz Technical University, Besiktas, Yildiz, 34349 Istanbul, Turkey; (S.D.); (V.U.)
| | - Veli Uysal
- Faculty of Mechanical Engineering, Automotive Division, Yildiz Technical University, Besiktas, Yildiz, 34349 Istanbul, Turkey; (S.D.); (V.U.)
| | - Ioannis Karnis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece; (I.K.); (S.H.A.)
| | - Minas M. Stylianakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece; (I.K.); (S.H.A.)
| | - Spiros H. Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology Hellas (FORTH), GR-70013 Heraklion, Crete, Greece; (I.K.); (S.H.A.)
| | - Dae-Eun Kim
- Center for Nano-Wear, Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea;
| |
Collapse
|