1
|
Li L, Ban Q, Song Y, Liu J, Qin Y, Zhang T, Kong J. Self-Templating Engineering of Hollow N-Doped Carbon Microspheres Anchored with Ternary FeCoNi Alloys for Low-Frequency Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406602. [PMID: 39344537 DOI: 10.1002/smll.202406602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Rational design and precision fabrication of magnetic-dielectric composites have significant application potential for microwave absorption in the low-frequency range of 2-8 GHz. However, the composition and structure engineering of these composites in regulating their magnetic-dielectric balance to achieve high-performance low-frequency microwave absorption remains challenging. Herein, a self-templating engineering strategy is proposed to fabricate hollow N-doped carbon microspheres anchored with ternary FeCoNi alloys. The high-temperature pyrolysis of FeCoNi alloy precursors creates core-shell FeCoNi alloy-graphitic carbon nano-units that are confined in carbon shells. Moreover, the anchored FeCoNi alloys play a critical role in maintaining hollow structural stability. In conjunction with the additional contribution of multiple heterogeneous interfaces, graphitization, and N doping to the regulation of electromagnetic parameters, hollow FeCoNi@NCMs exhibit a minimum reflection loss (RLmin) of -53.5 dB and an effective absorption bandwidth (EAB) of 2.48 GHz in the low-frequency range of 2-8 GHz. Furthermore, a filler loading of 20 wt% can also be used to achieve a broader EAB of 5.34 GHz with a matching thickness of 1.7 mm. In brief, this work opens up new avenues for the self-templating engineering of magnetic-dielectric composites for low-frequency microwave absorption.
Collapse
Affiliation(s)
- Luwei Li
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Qingfu Ban
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Yuejie Song
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Jie Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Yusheng Qin
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai, 264005, P. R. China
| | - Tiantian Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jie Kong
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
2
|
Zhang Y, Yang SH, Xin Y, Cai B, Hu PF, Dai HY, Liang CM, Meng YT, Su JH, Zhang XJ, Lu M, Wang GS. Designing Symmetric Gradient Honeycomb Structures with Carbon-Coated Iron-Based Composites for High-Efficiency Microwave Absorption. NANO-MICRO LETTERS 2024; 16:234. [PMID: 38954048 PMCID: PMC11219676 DOI: 10.1007/s40820-024-01435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 04/30/2024] [Indexed: 07/04/2024]
Abstract
The impedance matching of absorbers is a vital factor affecting their microwave absorption (MA) properties. In this work, we controllably synthesized Material of Institute Lavoisier 88C (MIL-88C) with varying aspect ratios (AR) as a precursor by regulating oil bath conditions, followed by one-step thermal decomposition to obtain carbon-coated iron-based composites. Modifying the precursor MIL-88C (Fe) preparation conditions, such as the molar ratio between metal ions and organic ligands (M/O), oil bath temperature, and oil bath time, influenced the phases, graphitization degree, and AR of the derivatives, enabling low filler loading, achieving well-matched impedance, and ensuring outstanding MA properties. The MOF-derivatives 2 (MD2)/polyvinylidene Difluoride (PVDF), MD3/PVDF, and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt% and as low as 5 wt%. The MD2/PVDF (5 wt%) achieved a maximum effective absorption bandwidth (EAB) of 5.52 GHz (1.90 mm). The MD3/PVDF (10 wt%) possessed a minimum reflection loss (RLmin) value of - 67.4 at 12.56 GHz (2.13 mm). A symmetric gradient honeycomb structure (SGHS) was constructed utilizing the high-frequency structure simulator (HFSS) to further extend the EAB, achieving an EAB of 14.6 GHz and a RLmin of - 59.0 dB. This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
Collapse
Affiliation(s)
- Yu Zhang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Shu-Hao Yang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Yue Xin
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Bo Cai
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Peng-Fei Hu
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China
| | - Hai-Yang Dai
- School of Electronics and Information, Zhengzhou University of Light Industry, Zhengzhou, 450002, People's Republic of China
| | - Chen-Ming Liang
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Yun-Tong Meng
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Ji-Hao Su
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China
| | - Xiao-Juan Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, 100048, People's Republic of China.
| | - Min Lu
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, People's Republic of China.
| | - Guang-Sheng Wang
- School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
3
|
Wang H, Zhang H, Feng S, Shi Y, Wang H, Zhao K, Nie A, Li T, Ma M, Ma Y. Fabrication of 1D Ni nanochains@Zn 2+ doping polypyrrole/reduced graphene oxide composites for high-performance electromagnetic wave absorption. J Colloid Interface Sci 2023; 652:258-271. [PMID: 37595443 DOI: 10.1016/j.jcis.2023.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/20/2023]
Abstract
Nowadays, electromagnetic radiation significantly impacts the normal operation of electronic devices and poses risks to human health. To effectively address this problem, the development of composites that exhibit exceptional electrochemical wave absorption through the combination of different components holds great promise. In this study, we have successfully prepared 1D Ni nanochains@Zn2+ doping polypyrrole/reduced graphene oxide (Ni NCs@Z-P/RGO, denoted as R-x) composites using a combination of hydrothermal, solvothermal, in situ polymerization, and physical blending methods. Notably, the R-2 composite demonstrates a remarkable minimum reflection loss (RLmin) of -63.58 dB at 14.3 GHz, with a thickness of 1.61 mm. Furthermore, the R-2 composite exhibits an impressive effective absorption bandwidth (EAB) of 5.08 GHz (11.92 GHz-17 GHz) at a thickness of 1.67 mm. These outstanding performances can be attributed to the synergistic effect of the different components and a well-thought-out structural design. Moreover, to showcase the practical applicability of the material, we have conducted additional investigations on the reduction of the radar cross-sectional area (RCS). The results strongly demonstrate that the prepared composite material, when used as a coating, effectively reduces the RCS value by up to 26.6 dB m2 for R-2 at θ = 0°. The experimental methods and simulations presented in this study hold significant potential for application in wave absorption research and practical implementations. Additionally, the prepared Ni NCs@Z-P/RGO composites demonstrate feasibility as wave-absorbing materials for future utilization.
Collapse
Affiliation(s)
- Haowen Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hao Zhang
- Technical Center, Xi'an Aerospace Sunvalor Chemical Co., Ltd, Xi'an 710086, PR China
| | - Shixuan Feng
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yuxia Shi
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Hankun Wang
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Kangze Zhao
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Aolin Nie
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Tingxi Li
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| | - Yong Ma
- School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
4
|
Zhao T, Jia Z, Zhang Y, Wu G. Multiphase Molybdenum Carbide Doped Carbon Hollow Sphere Engineering: The Superiority of Unique Double-Shell Structure in Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206323. [PMID: 36436944 DOI: 10.1002/smll.202206323] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Indexed: 06/16/2023]
Abstract
In order to achieve excellent electromagnetic wave (EMW) absorption properties, the microstructure design and component control of the absorber are critical. In this study, three different structures made of Mo2 C/C hollow spheres are prepared and their microwave absorption behavior is investigated. The Mo2 C/C double-shell hollow spheres consisting of an outer thin shell and an inner rough thick shell with multiple EMW loss mechanisms exhibit good microwave absorption properties. In order to further improve the microwave absorption properties, MoC1-x /C double-shell hollow spheres with different crystalline phases of molybdenum carbide are prepared to further optimize the EMW loss capability of the materials. Finally, MoC1-x /C double-shell hollow spheres with α-phase molybdenum carbide have the best microwave absorption properties. When the filling is 20 wt.%, the minimum reflection loss at 1.8 mm is -50.55 dB and the effective absorption bandwidth at 2 mm is 5.36 GHz, which is expected to be a microwave absorber with the characteristics of "thin, light, wide, and strong".
Collapse
Affiliation(s)
- Tianbao Zhao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong, 266071, P. R. China
- Weihai Innovation Institute, Qingdao University, Shandong, 264200, China
| | - Yan Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
5
|
Zhang S, Pei Y, Zhao Z, Guan C, Wu G. Simultaneous manipulation of polarization relaxation and conductivity toward self-repairing reduced graphene oxide based ternary hybrids for efficient electromagnetic wave absorption. J Colloid Interface Sci 2023; 630:453-464. [DOI: 10.1016/j.jcis.2022.09.149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
|
6
|
High Hydrophobic Wood/Cu-Fe3O4@Graphene/Ni Composites for Electromagnetic Interference Shielding. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02512-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Construction of heterointerfaces and honeycomb-like structure for ultrabroad microwave absorption. J Colloid Interface Sci 2022; 627:102-112. [PMID: 35842961 DOI: 10.1016/j.jcis.2022.07.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 06/29/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022]
Abstract
Heterointerface design is an effective strategy to improve the effective absorption bandwidth in electromagnetic wave EMW absorbing materials. In this paper, honeycomb-like Fe-doped tremella carbide composites (FCT) with a large number of heterogeneous interfaces were obtained by in-situ construction of multiphase composite particles (Fe3C, Fe3O4, and a-Fe) during the carbonization process. The effects of Fe doping on the phase, structure, morphology, and absorption properties of FCT were investigated. The results show that the porous structure and the heterogeneous interface can significantly improve the electromagnetic wave absorption performance of FCT. Iron doping introduces a heterogeneous multiphase structure into FCT, which increases the interfacial loss and magnetic loss of the material, thereby improving the overall impedance matching of the material. FCT-4 composite exhibited excellent microwave attenuation capability with a reflection loss of -34.6 dB. Simultaneously, the widest effective absorption bandwidth is up to 8.84 GHz (9.16-18 GHz) with a matching thickness of 2.8 mm, which covers almost the entire X (8-12 GHz) and Ku (12-18 GHz) bands. Thus, this paper provides an effective strategy for the preparation of excellent electromagnetic wave absorbing materials by in situ construction of heterointerfaces.
Collapse
|
8
|
Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
9
|
Zheng J, Zhou Z, Zhu L, Chen Q, Hong M, Fu H. Room temperature self-healing CIP/PDA/MWCNTs composites based on imine reversible covalent bond as microwave absorber. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
He P, Ma R, Li C, Ran L, Yuan W, Han YY, Deng L, Yan J. Molybdenum Blue Preassembly Strategy to Design Bimetallic Fe0.54Mo0.73/Mo2C@C for Tunable and Low-Frequency Electromagnetic Wave Absorption. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00323f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Advanced electromagnetic wave absorption nanomaterials can play an important role in addressing the issue of increasing electromagnetic pollution in wireless communication field. Herein, a series of coralloid bimetallic Fe0.54Mo0.73/Mo2C@C (FMC)...
Collapse
|
11
|
Chen C, Chen W, Zong B, Ding X, Dong H. The development of a magnetic iron/nitrogen-doped graphitized carbon composite with boosted microwave attenuation ability as the wideband microwave absorber. NANOSCALE ADVANCES 2021; 3:2343-2350. [PMID: 36133754 PMCID: PMC9418063 DOI: 10.1039/d0na00548g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/26/2020] [Indexed: 06/16/2023]
Abstract
Magnetic carbon-based composites have been attractive candidates for electromagnetic (EM) absorption due to their dual magnetic and dielectric loss ability. In this study, a novel magnetic carbon consisting of N-doped graphitized carbon and magnetic Fe nanoparticles was produced. First, the graphitized carbon doped with N has been demonstrated to be an efficient way to strengthen the conductivity loss ability. Based on the N-doped graphitized carbon (NGC), the magnetic Fe nanoparticles were further decorated on the NGC, which was not only favored the dielectric loss ability but also introduced the magnetic loss ability. The electromagnetic absorbing properties of the NGC-Fe nanoparticles were evaluated in the frequency range of 2-18 GHz, and as expected, the sample exhibited the excellent wideband EM absorbing ability, with an effective absorption region of 5.2 GHz under a thickness of 1.2 mm. Ulilization of element doping method consisted to modify magnetic carbon material can be a candidate for producing wideband EM absorbers but showing thin thickness.
Collapse
Affiliation(s)
- Cong Chen
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University Xining 810007 PR China
- Asia Silicon (Qinghai) Co., Ltd Xining Qinghai 810007 China
| | - Wen Chen
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University Xining 810007 PR China
| | - Bing Zong
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University Xining 810007 PR China
- Asia Silicon (Qinghai) Co., Ltd Xining Qinghai 810007 China
| | - Xiaohai Ding
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University Xining 810007 PR China
- Asia Silicon (Qinghai) Co., Ltd Xining Qinghai 810007 China
| | - Haitao Dong
- School of Physics and Electronic Information Engineering, Qinghai Nationalities University Xining 810007 PR China
- Asia Silicon (Qinghai) Co., Ltd Xining Qinghai 810007 China
| |
Collapse
|
12
|
Yin P, Zhang L, Wang J, Feng X, Dai J, Tang Y. Facile preparation of cotton-derived carbon fibers loaded with hollow Fe3O4 and CoFe NPs for significant low-frequency electromagnetic absorption. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.11.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Design and synthesis of NiCo/Co4S3@C hybrid material with tunable and efficient electromagnetic absorption. J Colloid Interface Sci 2021; 583:321-330. [DOI: 10.1016/j.jcis.2020.09.054] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 11/24/2022]
|
14
|
Zhang H, Shi C, Jia Z, Liu X, Xu B, Zhang D, Wu G. FeNi nanoparticles embedded reduced graphene/nitrogen-doped carbon composites towards the ultra-wideband electromagnetic wave absorption. J Colloid Interface Sci 2021; 584:382-394. [DOI: 10.1016/j.jcis.2020.09.122] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
|
15
|
Wang J, Wang B, Wang Z, Chen L, Gao C, Xu B, Jia Z, Wu G. Synthesis of 3D flower-like ZnO/ZnCo 2O 4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J Colloid Interface Sci 2020; 586:479-490. [PMID: 33162049 DOI: 10.1016/j.jcis.2020.10.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
Reasonable structure and composition are essential for electromagnetic wave absorption (EMW). Herein, ZnO hollow spheres were prepared with carbon spheres as templates and then synthesized ZnO/ZnCo2O4 composites by the solvothermal method and annealing treatment. The flower-like ZnCo2O4 material was produced by self-assembly of ZnCo2O4 nanosheets. The absorbing material with the complex structure has multiple scattering and reflection, conduction loss, resonance, and eddy current loss characteristics. Furthermore, the addition of ZnO hollow spheres has a significant impact on electromagnetic parameters and absorption properties. As a result, the addition of ZnO hollow spheres can greatly enhance the complex permittivity of the ZnO/ZnCo2O4 composites and obtain excellent EMW absorbing properties. It is worth noting that ZnO/ZnCo2O4 composites show the best EMW absorption properties when the ZnO hollow spheres were added up to 5 mg. The minimum reflection loss is -55.42 dB and a matching thickness of 1.99 mm while the maximum effective absorption bandwidth can also reach 7.44 GHz with a matching thickness of 2.4 mm. Our research can prove that the structure and composition have a significant influence on the properties of the absorbing material, which provides ideas for the development of absorbing materials with high-performance.
Collapse
Affiliation(s)
- Jianwei Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Bingbing Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhe Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Lei Chen
- State Key Laboratory of Tribology, School of Mechanical Engineering, Tsinghua University, Beijing 100084, China.
| | - Caihua Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Binghui Xu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
16
|
Design of Ti 3C 2T x/TiO 2/PANI multi-layer composites for excellent electromagnetic wave absorption performance. J Colloid Interface Sci 2020; 583:510-521. [PMID: 33035791 DOI: 10.1016/j.jcis.2020.09.094] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
Ti3C2Tx MXene is an excellent electromagnetic wave (EMW) absorber with excellent electrical conductivity and abundant surface functional groups. In this research, Ti3C2Tx/TiO2/PANI multi-layer composites were successfully synthesized by HCl and LiF etching, one-step hydrothermal method and in-situ polymerization. Ti3C2Tx can provide more electron transfer paths due to its unique multilayer structure and high specific surface area. The growth of TiO2 particles on the surface of Ti3C2Tx through hydrothermal reaction enhances the interface polarization, and then polyaniline (PANI) is doped on the surface of Ti3C2Tx where TiO2 particles are grown by in-situ polymerization. Due to the excellent dielectric properties and synergistic effects of the material itself, Ti3C2Tx/TiO2/PANI composites have excellent EMW absorption property. In this study, the Ti3C2Tx/TiO2/PANI composites showed the strong reflection loss (RL) of at 13.92 GHz, which was -65.61 dB, and the thickness was only 2.18 mm. Moreover, the composites also exhibit a wide absorption band, with an effective absorption bandwidth (RL < -10 dB) of 5.92 GHz (11.84 GHz to 17.76 GHz) at 2.10 mm. The results show that the Ti3C2Tx/TiO2/PANI composites are expected to become EMW absorber with thin thickness and high absorption strength.
Collapse
|