1
|
Feng B, Jiang W, Deng R, Lu J, Tsiakaras P, Yin S. Agglomeration inhibition engineering of nickel-cobalt alloys by a sacrificial template for efficient urea electrolysis. J Colloid Interface Sci 2024; 663:1019-1027. [PMID: 38452543 DOI: 10.1016/j.jcis.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Designing efficient non-precious metal-based catalysts for urea oxidation reaction (UOR) is essential for achieving energy-saving hydrogen production and the treatment of wastewater containing ammonia. In this study, sodium dodecyl sulfate (SDS) is employed as a sacrificial template to synthesize NiCo alloy nanowires (NiCo(SDS)/CC), and the instinct formation mechanism is investigated. It is found that SDS can inhibit the Ostwald ripening during hydrothermal and calcination processes, which could release abundant active cobalt, thereby modulating the electronic structure to promote the catalytic reaction. Moreover, SDS as a sacrificial template can induce the deposition of metal atoms and increase the specific surface area of the catalyst, providing abundant active sites to accelerate the reaction kinetics. As expected, the NiCo(SDS)/CC exhibits good activity for both UOR and hydrogen evolution reactions (HER) and it requires only 1.31 V and -86 mV to obtain a current density of ±10 mA cm-2, respectively. This work provides a new strategy for reducing the agglomeration of transition metals to design high-performance composite catalysts for urea oxidation.
Collapse
Affiliation(s)
- Boyao Feng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenjie Jiang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Rui Deng
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Jiali Lu
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| | - Shibin Yin
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece.
| |
Collapse
|
2
|
Varga G, Nguyen TT, Wang J, Tian D, Zhang R, Li L, Xu ZP. Isomorphic Insertion of Ce(III)/Ce(IV) Centers into Layered Double Hydroxide as a Heterogeneous Multifunctional Catalyst for Efficient Meerwein-Ponndorf-Verley Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11453-11466. [PMID: 38404195 PMCID: PMC10921384 DOI: 10.1021/acsami.3c16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024]
Abstract
The development of highly active acid-base catalysts for transfer hydrogenations of biomass derived carbonyl compounds is a pressing challenge. Solid frustrated Lewis pairs (FLP) catalysis is possibly a solution, but the development of this concept is still at a very early stage. Herein, stable, phase-pure, crystalline hydrotalcite-like compounds were synthesized by incorporating cerium cations into layered double hydroxide (MgAlCe-LDH). Besides the insertion of well-isolated cerium centers surrounded by hydroxyl groups, the formation of hydroxyl vacancies near the aluminum centers, which were formed by the insertion of cerium centers into the layered double hydroxides (LDH) lattice, was also identified. Depending on the initial cerium concentration, LDHs with different Ce(III)/Ce(IV) ratios were produced, which had Lewis acidic and basic characters, respectively. However, the acid-base character of these LDHs was related to the actual Ce(III)/Ce(IV) molar ratios, resulting in significant differences in their catalytic performance. The as-prepared structures enabled varying degrees of transfer hydrogenation (Meerwein-Ponndorf-Verley MPV reduction) of biomass-derived carbonyl compounds to the corresponding alcohols without the collapse of the original lamellar structure of the LDH. The catalytic markers through the test reactions were changed as a function of the amount of Ce(III) centers, indicating the active role of Ce(III)-OH units. However, the cooperative interplay between the active sites of Ce(III)-containing specimens and the hydroxyl vacancies was necessary to maximize catalytic efficiency, pointing out that Ce-containing LDH is a potentially commercial solid FLP catalysts. Furthermore, the crucial role of the surface hydroxyl groups in the MPV reactions and the negative impact of the interlamellar water molecules on the catalytic activity of MgAlCe-LDH were demonstrated. These solid FLP-like catalysts exhibited excellent catalytic performance (cyclohexanol yield of 45%; furfuryl alcohol yield of 51%), which is competitive to the benchmark Sn- and Zr-containing zeolite catalysts, under mild reaction conditions, especially at low temperature (T = 65 °C).
Collapse
Affiliation(s)
- Gábor Varga
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Interdisciplinary
Excellence Centre, Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Thanh-Truc Nguyen
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jing Wang
- Key
Laboratory of OptoElectronic Science and Technology for Medicine of
Ministry of Education, Fujian Provincial Key Laboratory of Photonics
Technology, Fujian Normal University, Fuzhou 350117, China
| | - Dihua Tian
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Run Zhang
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Li Li
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Zhi Ping Xu
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
3
|
Shi H, Qin J, Lv Q, Zhang L, Li Q, Ou B, Chen X. A karst-inspired hierarchical Mg/Al layered double hydroxide with a high entropy-driven process for interception and storage. Dalton Trans 2024; 53:4412-4425. [PMID: 38312075 DOI: 10.1039/d3dt03615d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Karstification plays a crucial role in forming magnificent scenery, and storing oil, natural gas, mineral resources, and water. Through the inspiration of karstification, a hierarchical layered double hydroxide (LDH) with funnel-like and cave-like structures (called Karst-LDH) is formed by the dissolution of acrylic acid/water solution. Meanwhile, the results of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) show that Karst-LDH has complicated and interconnected internal pipe networks. The actual maximum phosphate adsorption capacity of Karst-LDH reaches 126.38 mg g-1 due to the unique structures, protonation, ligand exchange, ion exchange, and hydrogen bonding, which is over ten times that of general LDH with a regular hexagonal structure. The results of isotherms and thermodynamics also indicate that Karst-LDH conforms to more heterogeneous and multilayer adsorption with a higher entropy-driven process. Karst-LDH exhibits good selectivity for chloride and nitrate ions. The change in the frontier orbital interaction between phosphate and different LDHs is a significant reason for quick macropore transmission, mesopore interception, and finally, phosphate storage in Karst-LDH. This work provides an efficient way for the design and fabrication of high adsorption performance materials with unique karst-type structures, which can be used for multiple fields potentially.
Collapse
Affiliation(s)
- Hongyu Shi
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Jun Qin
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Qing Lv
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Lijin Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Qingxin Li
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
| | - Bin Ou
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environment Engineering, Guizhou University, 550025 Guiyang, China.
- Fuzhou Hongtai Investment Co., Ltd, 350001 Fuzhou, China
| | - Xiaolang Chen
- Key Laboratory of Advanced Materials Technology Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, 610031 Chengdu, China.
| |
Collapse
|
4
|
Xi Z, Jiang Y, Ma Z, Li Q, Xi X, Fan C, Zhu S, Zhang J, Xu L. Using Mesoporous Silica-Based Dual Biomimetic Nano-Erythrocytes for an Improved Antitumor Effect. Pharmaceutics 2023; 15:2785. [PMID: 38140125 PMCID: PMC10747987 DOI: 10.3390/pharmaceutics15122785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
The nano-delivery system with a dual biomimetic effect can penetrate deeper in tumor microenvironments (TMEs) and release sufficient antitumor drugs, which has attracted much attention. In this study, we synthesized erythrocyte-like mesoporous silica nanoparticles (EMSNs) as the core loaded with doxorubicin (DOX) and coated them with calcium phosphate (CaP) and erythrocyte membrane (EM) to obtain DOX/EsPMs. The transmission electron microscopy (TEM), fluorescent co-localization and protein bands of SDS-PAGE were used to confirm the complete fabrication of EsPMs. The EsPMs with erythrocyte-like shape exhibited superior penetration ability in in vitro diffusion and tumor-sphere penetration experiments. Intracellular Ca2+ and ROS detection experiments showed that the CaP membranes of EsPMs with pH-sensitivity could provide Ca2+ continuously to induce reactive oxide species' (ROS) generation in the TME. The EM as a perfect "camouflaged clothing" which could confuse macrophagocytes into prolonging blood circulation. Hemolysis and non-specific protein adsorption tests proved the desirable biocompatibility of EsPMs. An in vivo pharmacodynamics evaluation showed that the DOX/EsPMs group had a satisfactory tumor-inhibition effect. These advantages of the nano-erythrocytes suggest that by modifying the existing materials to construct a nano-delivery system, nanoparticles will achieve a biomimetic effect from both their structure and function with a facilitated and sufficient drug release profile, which is of great significance for antitumor therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China; (Z.X.); (Y.J.); (Z.M.); (Q.L.); (X.X.); (C.F.); (S.Z.); (J.Z.)
| |
Collapse
|
5
|
Kondratowicz T, Horký O, Slang S, Dubnová L, Gajewska M, Chmielarz L, Čapek L. Hollow @CuMgAl double layered hydrotalcites and mixed oxides with tunable textural and structural properties, and thus enhanced NH 3-NO x-SCR activity. NANOSCALE ADVANCES 2023; 5:3063-3074. [PMID: 37260483 PMCID: PMC10228345 DOI: 10.1039/d3na00125c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023]
Abstract
Well-organized, spherical, mesoporous hollow @CuMgAl-LDHs (layered double hydroxides) are prepared by the controlled removal of the SiO2 from SiO2@CuMgAl-LDH core-shell hybrids that in turn are synthesized via a bottom-up strategy. The materials are prepared with various Cu/Mg molar ratios (Cu/Mg = 0.05-0.50) while keeping the ratio of Cu and Mg constant, (Cu + Mg)/Al = 2. The effect of Cu doping and the silica core removal process (conducted for 4 h at 30 °C using 1 M NaOH) on the chemical composition, morphology, structure, texture and reducibility of the resulting materials are described. @CuMgAl-MOs (mixed oxides) obtained by thermal treatment of the @CuMgAl-LDHs are active and selective catalysts for the selective catalytic reduction of NOx using ammonia, and effectively operate at low temperatures. The N2 yield increases with increased Cu content in the CuMgAl shell, which is associated with the easier reducibility of the Cu species incorporated into the MgAl matrix. @CuMgAl-MOs show better catalytic performance than bulk CuMgAl MOs.
Collapse
Affiliation(s)
- Tomasz Kondratowicz
- University of Pardubice, Faculty of Chemical Technology, Department of Physical Chemistry Studentská 573 532 10 Pardubice Czech Republic
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Ondřej Horký
- University of Pardubice, Faculty of Chemical Technology, Department of Physical Chemistry Studentská 573 532 10 Pardubice Czech Republic
| | - Stanislav Slang
- University of Pardubice, Faculty of Chemical Technology, Center of Materials and Nanotechnologies Studentská 95 532 10 Pardubice Czech Republic
| | - Lada Dubnová
- University of Pardubice, Faculty of Chemical Technology, Department of Physical Chemistry Studentská 573 532 10 Pardubice Czech Republic
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology Mickiewicza 30 30-059 Kraków Poland
| | - Lucjan Chmielarz
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30 387 Kraków Poland
| | - Libor Čapek
- University of Pardubice, Faculty of Chemical Technology, Department of Physical Chemistry Studentská 573 532 10 Pardubice Czech Republic
| |
Collapse
|
6
|
Takács D, Varga G, Csapó E, Jamnik A, Tomšič M, Szilágyi I. Delamination of Layered Double Hydroxide in Ionic Liquids under Ambient Conditions. J Phys Chem Lett 2022; 13:11850-11856. [PMID: 36520486 PMCID: PMC9806852 DOI: 10.1021/acs.jpclett.2c03275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Liquid phase delamination of layered materials into single- or few-layer nanosheets leads to stable nanoscale dispersions of 2D materials. The delamination of layered double hydroxide (LDH) to double hydroxide nanosheets was studied in two ionic liquids (ILs): ethylammonium nitrate (EAN) and 1-butyl-3-methylimidazolium thiocyanate (BMIMSCN). The as-prepared lamellar structure of LDH disappeared upon dispersing it in ILs due to delamination into 2D nanosheets confirmed by X-ray scattering and diffraction techniques and further evaluated by height profile assessment of the nanoparticles by atomic force microscopy. The results showed that both the thickness and lateral size of the dispersed particles decreased in the IL-based samples, indicating that cleavage of the LDH materials can be observed in addition to delamination. The findings prove the concept of delamination of layered materials by ILs under ambient conditions─an excellent way to prepare 2D double hydroxide nanosheet dispersions in one step using nonvolatile green solvents.
Collapse
Affiliation(s)
- Dóra Takács
- MTA-SZTE
Lendület “Momentum” Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary
Excellence Center, Department of Physical Chemistry and Materials
Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Varga
- Interdisciplinary
Excellence Center, Department of Physical Chemistry and Materials
Science, University of Szeged, H-6720 Szeged, Hungary
| | - Edit Csapó
- Interdisciplinary
Excellence Center, Department of Physical Chemistry and Materials
Science, University of Szeged, H-6720 Szeged, Hungary
- MTA-SZTE
Lendület “Momentum” Noble Metal Nanostructures
Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Andrej Jamnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - István Szilágyi
- MTA-SZTE
Lendület “Momentum” Biocolloids Research Group, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary
Excellence Center, Department of Physical Chemistry and Materials
Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
7
|
Surface modification of two-dimensional layered double hydroxide nanoparticles with biopolymers for biomedical applications. Adv Drug Deliv Rev 2022; 191:114590. [PMID: 36341860 DOI: 10.1016/j.addr.2022.114590] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/24/2022] [Accepted: 10/25/2022] [Indexed: 01/24/2023]
Abstract
Layered double hydroxides (LDHs) are appealing nanomaterials for (bio)medical applications and their potential is threefold. One can gain advantage of the structure of LDH frame (i.e., layered morphology), anion exchanging property towards drugs with acidic character and tendency for facile surface modification with biopolymers. This review focuses on the third aspect, as it is necessary to evaluate the advantages of polymer adsorption on LDH surfaces. Beside the short discussion on fundamental and structural features of LDHs, LDH-biopolymer interactions will be classified in terms of the effect on the colloidal stability of the dispersions. Thereafter, an overview on the biocompatibility and biomedical applications of LDH-biopolymer composite materials will be given. Finally, the advances made in the field will be summarized and future research directions will be suggested.
Collapse
|
8
|
Szerlauth A, Kónya ZD, Papp G, Kónya Z, Kukovecz Á, Szabados M, Varga G, Szilágyi I. Molecular orientation rules the efficiency of immobilized antioxidants. J Colloid Interface Sci 2022; 632:260-270. [DOI: 10.1016/j.jcis.2022.11.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/01/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
|
9
|
Dong M, Luo Q, Li J, Wu Z, Liu Z. Lithium adsorption properties of porous LiAl-layered double hydroxides synthesized using surfactants. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Chang CY, Chen YF, Tsai YT, Huang CF, Pan YT, Tsai DH. Sustainable Synthesis of Epoxides from Halohydrin Cyclization by Composite Solid-Based Catalysts. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ching-Yuan Chang
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| | - Yu-Fan Chen
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| | - Yi-Ta Tsai
- Chang Chun Plastic Co., Ltd., 7F, No. 301, Songjiang Rd., Taipei 104070, Taiwan, R.O.C
| | - Chien-Fu Huang
- Chang Chun Plastic Co., Ltd., 7F, No. 301, Songjiang Rd., Taipei 104070, Taiwan, R.O.C
| | - Yung-Tin Pan
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| | - De-Hao Tsai
- Department of Chemical Engineering, National Tsing-Hua University, No. 101, Sec. 2, Kuang-Fu Rd., Hsinchu City 30013, Taiwan, R.O.C
| |
Collapse
|
11
|
Nguyen TH, Tran HN, Nguyen TV, Vigneswaran S, Trinh VT, Nguyen TD, Ha Nguyen TH, Mai TN, Chao HP. Single-step removal of arsenite ions from water through oxidation-coupled adsorption using Mn/Mg/Fe layered double hydroxide as catalyst and adsorbent. CHEMOSPHERE 2022; 295:133370. [PMID: 34973248 DOI: 10.1016/j.chemosphere.2021.133370] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
This study developed a layered double hydroxides (Mn/Mg/Fe-LDH) material through a simple co-precipitation method. The Mn/Mg/Fe-LDH oxidized arsenite [As(III)] ions into arsenate [As(V)] anions. The As(III) and oxidized As(V) were then adsorbed onto Mn/Mg/Fe-LDH. The adsorption process of arseniate [As(V)] oxyanions by Mn/Mg/Fe-LDH was simultaneously conducted for comparison. Characterization results indicated that (i) the best Mg/Mn/Fe molar ratio was 1/1/1, (ii) Mn/Mg/Fe-LDH structure was similar to that of hydrotalcite, (iii) Mn/Mg/Fe-LDH possessed a positively charged surface (pHIEP of 10.15) and low Brunauer-Emmett-Teller surface area (SBET = 75.2 m2/g), and (iv) Fe2+/Fe3+ and Mn2+/Mn3+/Mn4+ coexisted in Mn/Mg/Fe-LDH. The As(III) adsorption process by Mn/Mg/Fe-LDH was similar to that of As(V) under different experimental conditions (initial solutions pH, coexisting foreign anions, contact times, initial As concentrations, temperatures, and desorbing agents). The Langmuir maximum adsorption capacity of Mn/Mg/Fe-LDH to As(III) (56.1 mg/g) was higher than that of As(V) (32.2 mg/g) at pH 7.0 and 25 °C. X-ray photoelectron spectroscopy was applied to identify the oxidation states of As in laden Mn/Mg/Fe-LDH. The key removal mechanism of As(III) by Mn/Mg/Fe-LDH was oxidation-coupled adsorption, and that of As(V) was reduction-coupled adsorption. The As(V) mechanism adsorption mainly involved: (1) the inner-sphere and outer-sphere complexation with OH groups of Mn/Mg/Fe-LDH and (2) anion exchange with host anions (NO3-) in its interlayer. The primary mechanism adsorption of As(III) was the inner-sphere complexation. The redox reactions made Mn/Mg/Fe-LDH lose its original layer structure after adsorbing As(V) or As(III). The adsorption process was highly irreversible. Mn/Mg/Fe-LDH can decontaminate As from real groundwater samples from 45-92 ppb to 0.35-7.9 ppb (using 1.0 g/L). Therefore, Mn/Mg/Fe-LDH has great potential as a material for removing As.
Collapse
Affiliation(s)
- Thi Hai Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia
| | - Hai Nguyen Tran
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh, 700000, Viet Nam; Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam.
| | - Tien Vinh Nguyen
- Faculty of Engineering and IT, University of Technology Sydney (UTS), Sydney, Australia.
| | | | - Van Tuyen Trinh
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | - Thanh Dong Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Viet Nam
| | | | - Trong Nhuan Mai
- VNU University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Huan-Ping Chao
- Department of Environmental Engineering and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan, 32023, Taiwan
| |
Collapse
|
12
|
Muráth S, Varga T, Kukovecz Á, Kónya Z, Sipos P, Pálinkó I, Varga G. Morphological aspects determine the catalytic activity of porous hydrocalumites: the role of the sacrificial templates. MATERIALS TODAY CHEMISTRY 2022. [DOI: 10.1016/j.mtchem.2021.100682] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Veselská V, Šillerová H, Hudcová B, Ratié G, Lacina P, Lalinská-Voleková B, Trakal L, Šottník P, Jurkovič Ľ, Pohořelý M, Vantelon D, Šafařík I, Komárek M. Innovative in situ remediation of mine waters using a layered double hydroxide-biochar composite. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127136. [PMID: 34879539 DOI: 10.1016/j.jhazmat.2021.127136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The current demand for alternative water sources requires the incorporation of low-cost composites in remediation technologies. These represent a sustainable alternative to more expensive, commercially used adsorbents. The main objective of this comprehensive field-scale study was to incorporate the layered double hydroxides (LDHs) into the hybrid biochar-based composites and apply an innovative material to remediate As/Sb-rich mine waters. The presence of hydrous Fe oxides (HFOs) within the composite enhanced the total adsorption efficiency of the composite for As(V) and Sb(V). The kinetic data fitted a pseudo-second order model. Equilibrium experiments confirmed that the composite had a stronger interaction with As(V) than with Sb(V). The efficient removal of As(V) from mine water was achieved in both batch and continuous flow column systems, reaching up to 98% and 80%, respectively. Sb(V) showed different behavior to As(V) during mine water treatment, reaching adsorption efficiencies of up to 39% and 26% in batch and column experiments, respectively. The migration of Sb(V) in mine water was mostly attributed to its dispersion before it was able to show affinity to the composite. In general, the proposed column technology is suitable for the field remediation of small volumes of contaminated water, and thus has significant commercial potential.
Collapse
Affiliation(s)
- Veronika Veselská
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic.
| | - Hana Šillerová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| | - Barbora Hudcová
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| | - Gildas Ratié
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic; Univ. Orléans, CNRS, BRGM, ISTO, UMR 7327, F-45071 Orléans, France
| | - Petr Lacina
- GEOtest, a.s., Šmahova 1244/112, 627 00 Brno, Czech Republic
| | | | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| | - Peter Šottník
- Department of Mineralogy, Petrology and Mineral Deposits, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Ľubomír Jurkovič
- Department of Geochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Michael Pohořelý
- Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojová 135, 165 02 Prague-Suchdol, Czech Republic; Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Delphine Vantelon
- SOLEIL synchrotron, L'orme des Merisiers, Saint Aubin BP48 91192 Gif-sur-Yvette Cedex, France
| | - Ivo Šafařík
- Department of Nanobiotechnology, Biology Centre, ISB, CAS, Na Sádkách 7, 370 05 České Budějovice, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Michael Komárek
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, 165 00 Prague-Suchdol, Czech Republic
| |
Collapse
|
14
|
Thermal decomposition behavior of MnO2/Mg-Al layered double hydroxide after removal and recovery of acid gas. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
15
|
Oxidation of Cysteinate Anions Immobilized in the Interlamellar Space of CaAl-Layered Double Hydroxide. MATERIALS 2021; 14:ma14051202. [PMID: 33806484 PMCID: PMC7961893 DOI: 10.3390/ma14051202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/02/2022]
Abstract
L-Cysteinate-intercalated CaAl-layered double hydroxide (LDH) was prepared by the co-precipitation method producing highly crystalline hydrocalumite phase with a well-pillared interlayer gallery. The obtained materials were characterized by X-ray diffractometry, IR as well as Raman spectroscopies. By performing interlamellar oxidation reactions with peracetic acid as oxidant, oxidation of cysteinate to cystinate in aqueous and cysteinate sulfenic acid in acetonic suspensions occurred. The oxidations could be performed under mild conditions, at room temperature, under neutral pH and in air. It has been shown that the transformation pathways are due to the presence of the layered structure, that is, the confined space of the LDH behaved as molecular reactor.
Collapse
|
16
|
Development of Mesopore Structure of Mixed Metal Oxide through Albumin-Templated Coprecipitation and Reconstruction of Layered Double Hydroxide. NANOMATERIALS 2021; 11:nano11030620. [PMID: 33801502 PMCID: PMC7999424 DOI: 10.3390/nano11030620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 02/25/2021] [Indexed: 01/27/2023]
Abstract
Mixed metal oxide (MMO) with relatively homogeneous mesopores was successfully obtained by calcination and reconstruction of albumin-templated layered double hydroxide (LDH). The aggregation degree of albumin-template was controlled by adjusting two different synthesis routes, coprecipitation and reconstruction. X-ray diffraction patterns and scanning electron microscopic images indicated that crystal growth of LDH was fairly limited during albumin-templated coprecipitation due to the aggregation. On the hand, crystal growth along the lateral direction was facilitated in albumin-templated reconstruction due to the homogeneous distribution of proteins moiety. Different state of albumin during LDH synthesis influenced the local disorder and porous structure of calcination product, MMO. The N2 adsorption-desorption isotherms demonstrated that calcination on reconstructed LDH produced MMO with large specific surface area and narrow distribution of mesopores compared with calcination of coprecipitated LDH.
Collapse
|