1
|
Bhatia T. Stability of multilamellar lipid tubules in excess water. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:749-756. [PMID: 37882815 DOI: 10.1007/s00249-023-01686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 08/26/2023] [Accepted: 09/23/2023] [Indexed: 10/27/2023]
Abstract
In the lyotropic phase of lipids with excess water, multilamellar tubules (MLTs) grow from defects. A phenomenological model for the stability of MLTs is developed that is universal and independent of the underlying growth mechanisms of MLTs. The stability of MLTs implies that they are in hydrostatic equilibrium and stable as elastic objects that have compression and bending elasticity. The results show that even with solvent pressure differences of 0.1 atm, the density profile is not significantly altered, so suggesting the stability is due to the trapped solvent. The results are of sufficient value in relation to lamellar stability models and may have implications beyond the described MLT models, especially in other models of membrane systems.
Collapse
Affiliation(s)
- Tripta Bhatia
- Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, Knowledge City, Manauli, SAS Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
2
|
Benkowska-Biernacka D, Mucha SG, Firlej L, Formalik F, Bantignies JL, Anglaret E, Samoć M, Matczyszyn K. Strongly Emitting Folic Acid-Derived Carbon Nanodots for One- and Two-Photon Imaging of Lyotropic Myelin Figures. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366586 DOI: 10.1021/acsami.3c05656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Non-invasive imaging of morphological changes in biologically relevant lipidic mesophases is essential for the understanding of membrane-mediated processes. However, its methodological aspects need to be further explored, with particular attention paid to the design of new excellent fluorescent probes. Here, we have demonstrated that bright and biocompatible folic acid-derived carbon nanodots (FA CNDs) may be successfully applied as fluorescent markers in one- and two-photon imaging of bioinspired myelin figures (MFs). Structural and optical properties of these new FA CNDs were first extensively characterized; they revealed remarkable fluorescence performance in linear and non-linear excitation regimes, justifying further applications. Then, confocal fluorescence microscopy and two-photon excited fluorescence microscopy were used to investigate a three-dimensional distribution of FA CNDs within the phospholipid-based MFs. Our results showed that FA CNDs are effective markers for imaging various forms and parts of multilamellar microstructures.
Collapse
Affiliation(s)
- Dominika Benkowska-Biernacka
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Sebastian G Mucha
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Lucyna Firlej
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Filip Formalik
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Micro, Nano, and Bioprocess Engineering, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Jean-Louis Bantignies
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Eric Anglaret
- Laboratoire Charles Coulomb (L2C), UMR5221, Université de Montpellier (CNRS), 34095 Montpellier, France
| | - Marek Samoć
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Katarzyna Matczyszyn
- Institute of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
3
|
Marušič N, Zhao Z, Otrin L, Dimova R, Ivanov I, Sundmacher K. Fusion-Induced Growth of Biomimetic Polymersomes: Behavior of Poly(dimethylsiloxane)-Poly(ethylene oxide) Vesicles in Saline Solutions Under High Agitation. Macromol Rapid Commun 2021; 43:e2100712. [PMID: 34820929 DOI: 10.1002/marc.202100712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Giant unilamellar vesicles serve as membrane models and primitive mockups of natural cells. With respect to the latter use, amphiphilic polymers can be used to replace phospholipids in order to introduce certain favorable properties, ultimately allowing for the creation of truly synthetic cells. These new properties also enable the employment of new preparation procedures that are incompatible with the natural amphiphiles. Whereas the growth of lipid compartments to micrometer dimensions has been well established, growth of their synthetic analogs remains underexplored. Here, the influence of experimental parameters like salt type/concentration and magnitude of agitation on the fusion of nanometer-sized vesicles made of poly(dimethylsiloxane)-poly(ethylene oxide) graft copolymer (PDMS-g-PEO) is investigated in detail. To this end, dynamic light scattering, microscopy, and membrane mixing assays are employed, and the process at different time and length scales is analyzed. This optimized method is used as an easy tool to obtain giant vesicles, equipped with membrane and cytosolic biomachinery, in the presence of salts at physiological concentrations.
Collapse
Affiliation(s)
- Nika Marušič
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Ziliang Zhao
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Leibniz Institute of Photonic Technology e.V., 07745, Jena, Germany.,Faculty of Physics and Astronomy, Institute of Applied Optics and Biophysics, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Lado Otrin
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Ivan Ivanov
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany
| |
Collapse
|
4
|
Khodaparast S, Sharratt WN, Dalgliesh RM, Cabral JT. Growth of Myelin Figures from Parent Multilamellar Vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12512-12517. [PMID: 34647752 DOI: 10.1021/acs.langmuir.1c02464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We examine the formation and growth of isolated myelin figures and microscale multilamellar tubules from isotropic micellar solutions of an anionic surfactant. Upon cooling, surfactant micelles transform into multilamellar vesicles (MLVs) whose contact is found to trigger the unidirectional growth of myelins. While the MLV diameter grows as dMLV ∝ t1/2, myelins grow linearly in time as LM ∝ t1, with a fixed diameter. Combining time-resolved small-angle neutron scattering (SANS) and optical microscopy, we demonstrate that the microscopic growth of spherical MLVs and cylindrical myelins stems from the same nanoscale molecular mechanism, namely, the surfactant exchange from micelles into curved lamellar structures at a constant volumetric rate. This mechanism successfully describes the growth rate of (nonequilibrium) myelin figures based on a population balance at thermodynamic equilibrium.
Collapse
Affiliation(s)
- Sepideh Khodaparast
- Leeds Institute of Fluid Dynamics (LIFD), School of Mechanical Engineering, University of Leeds, LS2 9JT Leeds, U.K
| | - William N Sharratt
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, U.K
| | - Robert M Dalgliesh
- ISIS Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, OX11 0QX Didcot, U.K
| | - João T Cabral
- Department of Chemical Engineering, Imperial College London, SW7 2AZ London, U.K
| |
Collapse
|