1
|
Ishak MI, Delint RC, Liu X, Xu W, Tsimbouri PM, Nobbs AH, Dalby MJ, Su B. Nanotextured titanium inhibits bacterial activity and supports cell growth on 2D and 3D substrate: A co-culture study. BIOMATERIALS ADVANCES 2024; 158:213766. [PMID: 38232578 DOI: 10.1016/j.bioadv.2024.213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/14/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Medical implant-associated infections pose a significant challenge to modern medicine, with aseptic loosening and bacterial infiltration being the primary causes of implant failure. While nanostructured surfaces have demonstrated promising antibacterial properties, the translation of their efficacy from 2D to 3D substrates remains a challenge. Here, we used scalable alkaline etching to fabricate nanospike and nanonetwork topologies on 2D and laser powder-bed fusion printed 3D titanium. The fabricated surfaces were compared with regard to their antibacterial properties against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, and mesenchymal stromal cell responses with and without the presence of bacteria. Finite elemental analysis assessed the mechanical properties and permeability of the 3D substrate. Our findings suggest that 3D nanostructured surfaces have potential to both prevent implant infections and allow host cell integration. This work represents a significant step towards developing effective and scalable fabrication methods on 3D substrates with consistent and reproducible antibacterial activity, with important implications for the future of medical implant technology.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Rosalia Cuahtecontzi Delint
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiayi Liu
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Wei Xu
- National Engineering Research Center for Advanced Rolling and Intelligent Manufacturing, Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Penelope M Tsimbouri
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Matthew J Dalby
- Centre for the Cellular Microenvironment, School of Biomedical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|
2
|
Gao H, Zhao L, Li L, Lin Z, Sheng S, Wang Q. Scale Effect of Surface Asperities on Stick-Slip Behavior of Zinc-Coated Steel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5561-5568. [PMID: 37018386 DOI: 10.1021/acs.langmuir.3c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Stick-slip behavior between friction pairs causes severe vibration problems such as abrasion and noise pollution, leading to material loss and deterioration in human health. This phenomenon is extremely complex because the surfaces of friction pairs have various asperities with different sizes. Therefore, it is of importance to understand the scale effect of asperities on the stick-slip behavior. Here, we selected four kinds of zinc-coated steels with multiscale surface asperities as a presentative example to reveal what types of asperities play the key role in affecting the stick-slip behavior. It is discovered that the stick-slip behavior is dominated by the density of small-scale asperities rather than large-scale asperities. High-density small-scale asperity increases the potential energy between asperities of the friction pairs, which leads to stick-slip behavior. It is suggested that decreasing the density of small-scale asperity on the surface significantly suppresses the stick-slip behavior. The present study reveals the scale effect of surface asperities on the stick-slip behavior and thus could offer a pathway to tailoring the surface topography of a wide range of materials for suppressing the stick-slip behavior.
Collapse
Affiliation(s)
- Hao Gao
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, China 110819
- School of Metallurgy, Northeastern University, Shenyang, China 110819
| | - Lijia Zhao
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, China 110819
| | - Li Li
- Research and Development, BMW Brilliance Automobile Ltd., Shenyang, China 110143
| | - Zhiqing Lin
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, China 110819
- School of Metallurgy, Northeastern University, Shenyang, China 110819
| | - Shaolong Sheng
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, China 110819
- School of Metallurgy, Northeastern University, Shenyang, China 110819
| | - Qiang Wang
- Key Laboratory of Electromagnetic Processing of Materials (Ministry of Education), Northeastern University, Shenyang, China 110819
| |
Collapse
|
3
|
Ishak MI, Eales M, Damiati L, Liu X, Jenkins J, Dalby MJ, Nobbs AH, Ryadnov MG, Su B. Enhanced and Stem-Cell-Compatible Effects of Nature-Inspired Antimicrobial Nanotopography and Antimicrobial Peptides to Combat Implant-Associated Infection. ACS APPLIED NANO MATERIALS 2023; 6:2549-2559. [PMID: 36875180 PMCID: PMC9972347 DOI: 10.1021/acsanm.2c04913] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Nature-inspired antimicrobial surfaces and antimicrobial peptides (AMPs) have emerged as promising strategies to combat implant-associated infections. In this study, a bioinspired antimicrobial peptide was functionalized onto a nanospike (NS) surface by physical adsorption with the aim that its gradual release into the local environment would enhance inhibition of bacterial growth. Peptide adsorbed on a control flat surface exhibited different release kinetics compared to the nanotopography, but both surfaces showed excellent antibacterial properties. Functionalization with peptide at micromolar concentrations inhibited Escherichia coli growth on the flat surface, Staphylococcus aureus growth on the NS surface, and Staphylococcus epidermidis growth on both the flat and NS surfaces. Based on these data, we propose an enhanced antibacterial mechanism whereby AMPs can render bacterial cell membranes more susceptible to nanospikes, and the membrane deformation induced by nanospikes can increase the surface area for AMPs membrane insertion. Combined, these effects enhance bactericidal activity. Since functionalized nanostructures are highly biocompatible with stem cells, they make promising candidates for next generation antibacterial implant surfaces.
Collapse
Affiliation(s)
- Mohd Irill Ishak
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | - Marcus Eales
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
- National
Physical Laboratory, Teddington TW11 0LW, U.K.
| | - Laila Damiati
- Department
of Biology, College of Science, University
of Jeddah, Jeddah 23218, Saudi Arabia
| | - Xiayi Liu
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | - Joshua Jenkins
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | - Matthew J. Dalby
- Centre
for the Cellular Microenvironment, University
of Glasgow, Glasgow G11 6EW, Scotland
| | - Angela H. Nobbs
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| | | | - Bo Su
- Bristol
Dental School, University of Bristol, Bristol BS1 2LY, U.K.
| |
Collapse
|
4
|
Ishak MI, Jenkins J, Kulkarni S, Keller TF, Briscoe WH, Nobbs AH, Su B. Insights into complex nanopillar-bacteria interactions: Roles of nanotopography and bacterial surface proteins. J Colloid Interface Sci 2021; 604:91-103. [PMID: 34265695 DOI: 10.1016/j.jcis.2021.06.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 10/21/2022]
Abstract
Nanopillared surfaces have emerged as a promising strategy to combat bacterial infections on medical devices. However, the mechanisms that underpin nanopillar-induced rupture of the bacterial cell membrane remain speculative. In this study, we have tested three medically relevant poly(ethylene terephthalate) (PET) nanopillared-surfaces with well-defined nanotopographies against both Gram-negative and Gram-positive bacteria. Focused ion beam scanning electron microscopy (FIB-SEM) and contact mechanics analysis were utilised to understand the nanobiophysical response of the bacterial cell envelope to a single nanopillar. Given their importance to bacterial adhesion, the contribution of bacterial surface proteins to nanotopography-mediated cell envelope damage was also investigated. We found that, whilst cell envelope deformation was affected by the nanopillar tip diameter, the nanopillar density affected bacterial metabolic activities. Moreover, three different types of bacterial cell envelope deformation were observed upon contact of bacteria with the nanopillared surfaces. These were attributed to bacterial responses to cell wall stresses resulting from the high intrinsic pressure caused by the engagement of nanopillars by bacterial surface proteins. Such influences of bacterial surface proteins on the antibacterial action of nanopillars have not been previously reported. Our findings will be valuable to the improved design and fabrication of effective antibacterial surfaces.
Collapse
Affiliation(s)
- Mohd I Ishak
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK; School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; Faculty of Engineering Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - J Jenkins
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - S Kulkarni
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany
| | - T F Keller
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, Hamburg 22607, Germany; Physics Department, University of Hamburg, Hamburg, Germany
| | - Wuge H Briscoe
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| | - Angela H Nobbs
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - Bo Su
- Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, UK.
| |
Collapse
|