1
|
Kwarkye N, Lehmann E, Vitz J, Nischang I, Schubert US, Ritschel T, Totsche KU. Tailor-made polymer tracers reveal the role of clay minerals on colloidal transport in carbonate media. J Colloid Interface Sci 2025; 678:609-618. [PMID: 39265333 DOI: 10.1016/j.jcis.2024.08.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024]
Abstract
HYPOTHESIS Host rock weathering and incipient pedogenesis result in the exposition of minerals, e.g., clay minerals in sedimentary limestones. Once exposed, these minerals provide the surfaces for fluid-solid interactions that control the fate of dissolved or suspended compounds such as organic matter and colloids. However, the functional and compositional diversity of organic matter and colloids limits the assessment of reactivity and availability of clay mineral interfaces. Such assessment demands a mobile compound with strong affinity to clay surfaces that is alien to the subsurface. EXPERIMENT We approached this challenge by using poly(ethylene glycol) (PEG) as interfacial tracer in limestone weathering experiments. FINDINGS PEG adsorption and transport was dependent on the availability of clay mineral surfaces and carbonate dissolution dynamics. In addition, PEG adsorption featured adsorption-desorption hysteresis which retained PEG mass on clay mineral surfaces. This resulted in different PEG transport for experiments conducted consecutively in the same porous medium. As such, PEG transport was reconstructed with a continuum-scale model parametrized by a Langmuir-type isotherm including hysteresis. Thus, we quantified the influence of exposed clay mineral surfaces on the transport of organic colloids in carbonate media. This renders PEG a suitable model colloid tracer for the assessment of clay surface exposition in porous media.
Collapse
Affiliation(s)
- Nimo Kwarkye
- Department of Hydrogeology, Friedrich-Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Elisabeth Lehmann
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Vitz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Germany
| | - Thomas Ritschel
- Department of Hydrogeology, Friedrich-Schiller University Jena, Burgweg 11, 07749 Jena, Germany
| | - Kai Uwe Totsche
- Department of Hydrogeology, Friedrich-Schiller University Jena, Burgweg 11, 07749 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Germany.
| |
Collapse
|
2
|
Huang X, Liang Y, Yun J, Cao F, Xie T, Song H, Wang S. Influence of organic matters on the adsorption-desorption of 1,2-dichloroethane on soil in water and model saturated aquifer. RSC Adv 2024; 14:3033-3043. [PMID: 38239453 PMCID: PMC10794954 DOI: 10.1039/d3ra06568e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/24/2023] [Indexed: 01/22/2024] Open
Abstract
1,2-Dichloroethane (1,2-DCA) is a typical organic chlorinated compound largely utilized in chemical manufacturing and industrial production and also a common pollutant in organically contaminated sites. The adsorption of 1,2-DCA on soil grains significantly influences its environmental fate and removal process. This study investigated the influence of fulvic acid (FA) and humic acid (HA) on the adsorption-desorption of 1,2-DCA in solid-liquid interfaces in water or constructed porous media. Experimental findings demonstrated the influence of organic matter on the adsorption of 1,2-DCA at the solid-water interface. 1,2-DCA adsorption increased in the FA or HA-treated soils when organic matter was present on the solid surfaces. The 1,2-DCA adsorption in the mixture of FA and HA was slightly lower than that in single organic acids, depending on the binding of FA and HA to the soil grains/colloids. Basic conditions reduced the adsorption of 1,2-DCA on soils, whereas acidic conditions enhanced adsorption due to the increased interactions via adsorption sites and hydrogen bonds. Conversely, the presence of organic matter in solutions (liquid phase in constructed porous media) will reduce the adsorption of 1,2-DCA on solid surfaces and increase the transport in the model aquifer. The combination of FA, HA, and rhamnolipids is helpful for the removal of 1,2-DCA from solid surfaces. Additionally, because of the enhanced desorption, the risk of 1,2-DCA contamination in groundwater can be increased when the organic matter or surfactant is present in the liquid phase if the eluent is not collected. This study helps to better understand the cooperative interaction of soil organic matter and chlorinated hydrocarbons at solid-water interfaces and the environmental fate and potential removal strategies of chlorinated hydrocarbons in contaminated sites.
Collapse
Affiliation(s)
- Xinhong Huang
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region Nanning 530004 Guangxi China
| | - Yan Liang
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- Guangxi Bossco Environmental Protection Technology Co., Ltd Nanning 530007 China
- Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region Nanning 530004 Guangxi China
| | - Jinhu Yun
- School of Resources, Environment and Materials, Guangxi University Nanning 530004 China
- Key Laboratory of Environmental Protection (Guangxi University), Education Department of Guangxi Zhuang Autonomous Region Nanning 530004 Guangxi China
| | - Feishu Cao
- Guangxi Bossco Environmental Protection Technology Co., Ltd Nanning 530007 China
- Guangxi Key Laboratory of Environmental Pollution Control and Ecosystem Restoration Nanning 530007 Guangxi China
| | - Tian Xie
- Guangxi Bossco Environmental Protection Technology Co., Ltd Nanning 530007 China
- Guangxi Key Laboratory of Environmental Pollution Control and Ecosystem Restoration Nanning 530007 Guangxi China
| | - Hainong Song
- Guangxi Bossco Environmental Protection Technology Co., Ltd Nanning 530007 China
- Guangxi Key Laboratory of Environmental Pollution Control and Ecosystem Restoration Nanning 530007 Guangxi China
| | - Shuangfei Wang
- Guangxi Bossco Environmental Protection Technology Co., Ltd Nanning 530007 China
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 China
| |
Collapse
|
3
|
Kleemann K, Bolduan P, Battagliarin G, Christl I, McNeill K, Sander M. Molecular Structure and Conformation of Biodegradable Water-Soluble Polymers Control Adsorption and Transport in Model Soil Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1274-1286. [PMID: 38164921 PMCID: PMC10795197 DOI: 10.1021/acs.est.3c05770] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
Water-soluble polymers (WSPs) are used in diverse applications, including agricultural formulations, that can result in the release of WSPs to soils. WSP biodegradability in soils is desirable to prevent long-term accumulation and potential associated adverse effects. In this work, we assessed adsorption of five candidate biodegradable WSPs with varying chemistry, charge, and polarity characteristics (i.e., dextran, diethylaminoethyl dextran, carboxymethyl dextran, polyethylene glycol monomethyl ether, and poly-l-lysine) and of one nonbiodegradable WSP (poly(acrylic acid)) to sand and iron oxide-coated sand particles that represent important soil minerals. Combined adsorption studies using solution-depletion measurements, direct surface adsorption techniques, and column transport experiments over varying solution pH and ionic strengths revealed electrostatics dominating interactions of charged WSPs with the sorbents as well as WSP conformations and packing densities in the adsorbed states. Hydrogen bonding controls adsorption of noncharged WSPs. Under transport in columns, WSP adsorption exhibited fast and slow kinetic adsorption regimes with time scales of minutes to hours. Slow adsorption kinetics in soil may lead to enhanced transport but also shorter lifetimes of biodegradable WSPs, assuming more rapid biodegradation when dissolved than adsorbed. This work establishes a basis for understanding the coupled adsorption and biodegradation dynamics of biodegradable WSPs in agricultural soils.
Collapse
Affiliation(s)
- Kevin Kleemann
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Patrick Bolduan
- BASF
SE, Materials and Formulation Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Glauco Battagliarin
- BASF
SE, Materials and Formulation Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Iso Christl
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Sander
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
4
|
Gong X, Zhao C, Wang Y, Luo Y, Zhang C. Antifreezing, Ionically Conductive, Transparent, and Antidrying Carboxymethyl Chitosan Self-Healing Hydrogels as Multifunctional Sensors. ACS Biomater Sci Eng 2022; 8:3633-3643. [PMID: 35876253 DOI: 10.1021/acsbiomaterials.2c00496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through a simple strategy of immersion in a mixed solution of water/ethylene glycol (EG)/lithium chloride (LiCl), self-healing carboxymethyl chitosan (CA) hydrogels, that is, CA/N-vinylpyrrolidone-EG-Li+ hydrogels (CEH) with an ultra-low-temperature freezing resistance below -70 °C were fabricated. The introduction of electrolyte ions and small-molecule polyol also made these hydrogels highly conductive (0.8 S m-1) and imparted antidrying property to them, showing stable and reversible sensitivity to finger-wrist bending as well as 150 cycles of stretching. Such hydrogels also presented highly efficient self-healing ability, with a stress-strain healing efficiency of over 90%. Furthermore, the CEH-based sensors maintained a stable sensing performance over a wide range of temperatures below the freezing point (from -10 to -70 °C) and exhibited stable sensitivity to temperatures with fast response and no significant hysteresis. The present work is expected to provide a simple and sustainable route for the preparation of multifunctional antifreezing conductive hydrogels based on CA, leading to a wide range of potential applications in soft sensor devices.
Collapse
Affiliation(s)
- Xinhu Gong
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Caimei Zhao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Yang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Ying Luo
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| | - Chaoqun Zhang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.,Guangdong Laboratory for Lingnan Modern Agriculture, 483 Wushan Road, Guangzhou 510642, China
| |
Collapse
|
5
|
Ahmed S, Baijal G, Somashekar R, Iyer S, Nayak V. One Pot Synthesis of PEGylated Bimetallic Gold-Silver Nanoparticles for Imaging and Radiosensitization of Oral Cancers. Int J Nanomedicine 2021; 16:7103-7121. [PMID: 34712044 PMCID: PMC8545617 DOI: 10.2147/ijn.s329762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/04/2021] [Indexed: 12/11/2022] Open
Abstract
Background Radiotherapy is an important treatment modality for many types of head and neck squamous cell carcinomas. Nanomaterials comprised of high atomic number (Z) elements are novel radiosensitizers enhance radiation injury by production of free radicals and subsequent DNA damage. Gold nanoparticles are upcoming as promising radiosensitizers due to their high (Z) biocompatibility, and ease for surface engineering. Bimetallic nanoparticles have shown enhanced anticancer activity compared to monometallic nanoparticles. Materials and Methods PEG-coated Au–Ag alloy nanoparticles (BNPs) were synthesized using facile one pot synthesis techniques. Size of ~50±5nm measured by dynamic light scattering. Morphology, structural composition and elemental mapping were analyzed by electron microscopy and SAXS (small-angle X-ray scattering). The radiosensitization effects on KB oral cancer cells were evaluated by irradiation with 6MV X-rays on linear accelerator. Nuclear damage was imaged using confocal microscopy staining cells with Hoechst stain. Computed tomography (CT) contrast enhancement of BNPs was compared to that of the clinically used agent, Omnipaque. Results BNPs were synthesized using PEG 600 as reducing and stabilizing agent. The surface charge of well dispersed colloidal BNPs solution was −5mV. Electron microscopy reveals spherical morphology. HAADF-STEM and elemental mapping studies showed that the constituent metals were Au and Ag intermixed nanoalloy. Hydrodynamic diameter was ~50±5nm due to PEG layer and water molecules absorption. SAXS measurement confirmed BNPs size around 35nm. Raman shift of around 20 cm−1 was observed when BNPs were coated with PEG. 1H NMR showed extended involvement of −OH in synthesis. BNPs efficiently enter cytoplasm of KB cells and demonstrated potent in vitro radiosensitization with enhancement ratio ~1.5–1.7. Imaging Hoechst-stained nuclei demonstrated apoptosis in a dose-dependent manner. BNPs exhibit better CT contrast enhancement ability compared to Omnipaque. Conclusion This bimetallic intermix nanoparticles could serve a dual function as radiosensitizer and CT contrast agent against oral cancers, and by extension possibly other cancers as well.
Collapse
Affiliation(s)
- Shameer Ahmed
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| | - Gunjan Baijal
- Department of Radiation Oncology, Manipal Hospital Goa, Panaji, Goa, India
| | - Rudrappa Somashekar
- Centre for Materials Science and Technology, Vijnana Bhavan, Mysore, Karnataka, India
| | - Subramania Iyer
- Department of Head and Neck Oncology, Amrita Institute of Medical Sciences, Ponekkara, Cochin, India
| | - Vijayashree Nayak
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, K.K. Birla Goa Campus, Sancoale, Goa, India
| |
Collapse
|