1
|
Wan M, Xu B, Shi L, Zhou T, Zheng N, Sun Z. Self-assembled Au-CQDs nanofluids with excellent solar absorption and medium-high temperature stability for solar energy harvesting. J Colloid Interface Sci 2024; 672:765-775. [PMID: 38870767 DOI: 10.1016/j.jcis.2024.05.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
Nanofluids-based direct absorption solar collectors are promising candidates for medium-high-temperature solar energy harvesting. However, nanofluids' complicated preparation process and undesirable high-temperature stability have hindered their practical applications. Herein, we propose a facile method for synthesizing gold/carbon quantum dots (Au-CQDs) nanofluids by directly carbonizing the base fluid and spontaneously assembling with Au nanoparticles (AuNPs) triggered by high temperatures. The results indicate that the self-assembled Au-CQDs nanofluids can maintain high stability at 110 °C for 100 h without precipitation and keep excellent photothermal conversion performance under 10 sun irradiation. The concentration and particle size of AuNPs are crucial factors affecting the self-assembly process. By modulating the microscopic morphologies of the self-assembled nanoparticles, the extinction coefficient of the prepared nanofluids is up to 88.7 % at a low loading of 30 ppm. The nanofluids can reach an equilibrium temperature of 50 °C under 1 sun irradiation, 10.4 °C higher than the base fluid due to the enhanced plasmonic effects and stability resulting from the CQDs dotted AuNPs. This work offers a new strategy to fabricate highly stable nanofluids with excellent light absorption properties for efficient solar thermal applications.
Collapse
Affiliation(s)
- Minghan Wan
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Bing Xu
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Lei Shi
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Tian Zhou
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Nianben Zheng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, China.
| | - Zhiqiang Sun
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
2
|
Tohgha UN, Ly JT, Lee KM, Marsh ZM, Watson AM, Grusenmeyer TA, Godman NP, McConney ME. Switchable Optical Properties of Dyes and Nanoparticles in Electrowetting Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:142. [PMID: 38251107 PMCID: PMC10821281 DOI: 10.3390/nano14020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024]
Abstract
The optical properties of light-absorbing materials in optical shutter devices are critical to the use of such platforms for optical applications. We demonstrate switchable optical properties of dyes and nanoparticles in liquid-based electrowetting-on-dielectric (EWOD) devices. Our work uses narrow-band-absorbing dyes and nanoparticles, which are appealing for spectral-filtering applications targeting specific wavelengths while maintaining device transparency at other wavelengths. Low-voltage actuation of boron dipyromethene (BODIPY) dyes and nanoparticles (Ag and CdSe) was demonstrated without degradation of the light-absorbing materials. Three BODIPY dyes were used, namely Abs 503 nm, 535 nm and 560 nm for dye 1 (BODIPY-core), 2 (I2BODIPY) and 3 (BODIPY-TMS), respectively. Reversible and low-voltage (≤20 V) switching of dye optical properties was observed as a function of device pixel dimensions (300 × 900, 200 × 600 and 150 × 450 µm). Low-voltage and reversible switching was also demonstrated for plasmonic and semiconductor nanoparticles, such as CdSe nanotetrapods (abs 508 nm), CdSe nanoplatelets (Abs 461 and 432 nm) and Ag nanoparticles (Abs 430 nm). Nanoparticle-based devices showed minimal hysteresis as well as faster relaxation times. The study presented can thus be extended to a variety of nanomaterials and dyes having the desired optical properties.
Collapse
Affiliation(s)
- Urice N. Tohgha
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
- Azimuth Corporation, Fairborn, OH 45431, USA
| | | | - Kyung Min Lee
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
- Azimuth Corporation, Fairborn, OH 45431, USA
| | - Zachary M. Marsh
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| | - Alexander M. Watson
- Department of Engineering Management, School of Engineering, Systems, and Technology, University of Dayton, Dayton, OH 45469, USA
| | - Tod A. Grusenmeyer
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| | - Nicholas P. Godman
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| | - Michael E. McConney
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, OH 45433, USA; (U.N.T.); (K.M.L.); (Z.M.M.); (T.A.G.); (N.P.G.)
| |
Collapse
|
3
|
Xu X, Wang F, Qin Z, Wen B. Electrowetting lattice Boltzmann method for micro- and nano-droplet manipulations. Phys Rev E 2023; 107:045305. [PMID: 37198769 DOI: 10.1103/physreve.107.045305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 03/23/2023] [Indexed: 05/19/2023]
Abstract
Electrowetting has become a widely used tool for manipulating tiny amounts of liquids on surfaces. This paper proposes an electrowetting lattice Boltzmann method for manipulating micro-nano droplets. The hydrodynamics with the nonideal effect is modeled by the chemical-potential multiphase model, in which the phase transition and equilibrium are directly driven by chemical potential. For electrostatics, droplets in the micro-nano scale cannot be considered as equipotential as macroscopic droplets due to the Debye screening effect. Therefore, we linearly discretize the continuous Poisson-Boltzmann equation in a Cartesian coordinate system, and the electric potential distribution is stabilized by iterative computations. The electric potential distribution of droplets at different scales suggests that the electric field can still penetrate micro-nano droplets even with the screening effect. The accuracy of the numerical method is verified by simulating the static equilibrium of the droplet under the applied voltage, and the results show the apparent contact angles agree very well with the Lippmann-Young equation. The microscopic contact angles present some obvious deviations due to the sharp decrease of electric field strength near the three-phase contact point. These are consistent with previously reported experimental and theoretical analyses. Then, the droplet migrations on different electrode structures are simulated, and the results show that droplet speed can be stabilized more quickly due to the more uniform force on the droplet in the closed symmetric electrode structure. Finally, the electrowetting multiphase model is applied to study the lateral rebound of droplets impacting on the electrically heterogeneous surface. The electrostatic force prevents the droplets from contracting on the side which is applied voltage, resulting in the lateral rebound and transport toward the side.
Collapse
Affiliation(s)
- Xin Xu
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| | - Fei Wang
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| | - Zhangrong Qin
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| | - Binghai Wen
- Key Lab of Education Blockchain and Intelligent Technology, Ministry of Education, Guangxi Normal University, Guilin 541004, China and Guangxi Key Lab of Multi-Source Information Mining and Security, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
4
|
Tohgha UN, Watson AM, Godman NP. Low voltage electrowetting of non-aqueous fluorescent quantum dot nanofluids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|