1
|
Wang Q, Mu J. Baking-inspired pore regulation strategy towards a hierarchically porous carbon for ultra-high efficiency cationic/anionic dyes adsorption. BIORESOURCE TECHNOLOGY 2024; 395:130324. [PMID: 38228220 DOI: 10.1016/j.biortech.2024.130324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Converting waste resource into porous carbon toward contaminant capturing is a crucial strategy for realizing "treating waste with waste". Inspired by bread baking process, the soybean meal activated carbon (SAC) with multimodal pore structures was developed via thermally remodeling the pores of waste soybean meal. The obtained SAC-3-800 has ultra-high specific surface area (3536.952 m2/g), as well as a hierarchically porous structure. SAC-3-800 exhibits extremely high adsorption capacity for methylene blue (MB) (3015.59 mg/g), methyl orange (MO) (6486.30 mg/g), and mixed dyes (8475.09 mg/g). The hierarchically porous structure enabled fast adsorption kinetics of SAC-3-800 for MB and MO (∼30 min). Additionally, SAC-3-800 shows excellent dynamic adsorption and regeneration performance, exhibiting great potential for industrial applications. This work showcases a feasible method for synthesizing hierarchically porous carbon with outstanding adsorption performance that can simultaneously achieve efficient treatment of dye-wastewater and value-added utilization of waste resources.
Collapse
Affiliation(s)
- Qihang Wang
- Key Laboratory of Wood Material Science and Application, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China; Center for Water and Ecology, Tsinghua University, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jun Mu
- Key Laboratory of Wood Material Science and Application, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Wood Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Liu Z, Gao B, Han H, Fu H. Graphene oxide nanosheets immobilised on honeycomb pore structure of pomelo peel for enhanced removal of methylene blue. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9727-9744. [PMID: 37831224 DOI: 10.1007/s10653-023-01765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Herein, for the first time, a simple, green, direct immersion immobilisation method is reported for graphene oxide (GO) nanosheets using pomelo peel (PL) as a substrate. A GO/PL porous sponge was successfully prepared and used to remove methylene blue (MB) from dye wastewater. Considering the porosity, hydrophilicity and elasticity of the PL, the PL was placed in a GO aqueous suspension through direct immersion immobilisation. The carboxyl and hydroxyl groups in the peel could effectively capture and immobilise the GO nanosheets. GO was adsorbed into the PL pores and dispersed throughout the PL. Finally, the prepared super-hydrophilic and elastic GO/PL exhibited excellent adsorption performance towards MB in dye wastewater. The adsorption results revealed that the adsorption behaviour was consistent with the Langmuir isotherm and quasi-secondary kinetic models. The maximum equilibrium adsorption capacity of GO/PL towards MB was 124.2 mg/g, exceeding the values obtained for most of the previously reported adsorbents. Moreover, after five consecutive adsorption-desorption cycles, GO/PL retained 75% of its initial adsorption capacity. Mechanistic analysis revealed that pore filling, electrostatic attraction, ion exchange and hydrogen bonding interactions are the primary driving forces facilitating MB adsorption.
Collapse
Affiliation(s)
- Zhuang Liu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, Liaoning Province, People's Republic of China
| | - Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, Liaoning Province, People's Republic of China.
| | - Haoyuan Han
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, Liaoning Province, People's Republic of China
| | - Haiyang Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), Northeastern University, Shenyang, 110819, Liaoning Province, People's Republic of China
| |
Collapse
|
3
|
Li X, Li K. Multifunctional pH-responsive carbon-based hydrogel adsorbent for ultrahigh capture of anionic and cationic dyes in wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131045. [PMID: 36827726 DOI: 10.1016/j.jhazmat.2023.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/14/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
An environmental friendly hydrogel adsorbent (DEC@GEL) was successfully manufactured by a facile free-radical polymerization method. Multiple characterizations demonstrated that the adsorbent was rich in functional groups and porous structures. The batch and multisystem adsorption experiments were applied to systematically investigate the adsorption properties of methylene blue (MB), malachite green (MG), indigo sodium dimethyl sulfonate (IC) and tartrazine (TR) in wastewater. The experimental results proved that the kinetic and isotherms of four dyes were more consistent with the pseudo-second-order and Langmuir model, respectively. Notably, the maximum adsorption capacities of MB, MG, TR and IC at 318 K were 2186.85, 2302.53, 1766.13 and 2301.75 mg/g, respectively, which were higher than many adsorbents that had been reported. Recycle experiment demonstrated the high reusability of the DEC@GEL. The selectivity and adsorption column experiments proved that DEC@GEL was not only widely applicable to various dyes, but also provided a positive start for the industrial application. Moreover, the simulated adsorption experiments further demonstrate that DEC@GEL had the prospect of application in real industrial conditions. Finally, four adsorption mechanisms had been proposed. Various adsorption experiments had shown that DEC@GEL was not only efficient in processing dyes, but also had great potential for practical industrial applications.
Collapse
Affiliation(s)
- Xin Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China
| | - Keran Li
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, PR China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610500, PR China.
| |
Collapse
|
4
|
Assimeddine M, Farid Z, Abdennouri M, Barka N, Lemdek EM, Sadiq M. Improvement of photocatalytic degradation of methyl orange by impregnation of natural clay with nickel: optimization using the Box-Behnken design (BBD). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62494-62507. [PMID: 36943563 DOI: 10.1007/s11356-023-26417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/08/2023] [Indexed: 05/10/2023]
Abstract
In this research work, the photocatalytic degradation of methyl orange dye was studied on nickel oxide supported on a natural Moroccan clay (Ni/NC). These catalysts have been prepared by dry impregnation of a nickel nitrate solution with different weight percentages (5, 10, 20% NiO). Experimental responses were obtained by a Box-Behnken (BBD) experimental design by varying the catalyst mass, solution pH, and initial dye concentration at three levels (low, medium, and high). The prepared catalysts were characterized using powder X-ray diffraction (XRD) to assess crystallinity and structure, Fourier transform infrared spectroscopy (FTIR) to detect different functional groups, scanning electron microscopy (SEM) combined with energy dispersive X-ray (EDX) analysis to study the surface morphology, and the optical characteristics of the catalysts were studied using absorption and diffuse reflectance measurements in the UV-visible range. The photocatalytic activity of the catalysts was evaluated in aqueous solutions under UV irradiation. ANOVA (analysis of variance) test is employed to recognize the significant factors and their interactions and then give the model equation for the percent dye degradation. The optimal values of the studied factors were determined by numerical optimization, and the results showed that about 100% degradation of the methyl orange dye could be achieved under the following optimal conditions, which are pH = 4.38, catalyst concentration of 0.99 g/L, and initial dye concentration of 30.42 mg/L.
Collapse
Affiliation(s)
- Meryem Assimeddine
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Zohra Farid
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Mohamed Abdennouri
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - Noureddine Barka
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco
| | - El Mokhtar Lemdek
- Laboratory of Materials, Membranes, and Nanotechnology, Faculty of Sciences, Moulay Ismail University, Zitoune, PB 11201, 50050, Meknes, Morocco
| | - M'hamed Sadiq
- MRI Lab, Research Group SEMA, Sultan Moulay Slimane University of Beni Mellal, FP Khouribga, B.P. 145, 25000, Beni-Mellal, Morocco.
| |
Collapse
|
5
|
Polo-Mendoza R, Navarro-Donado T, Ortega-Martinez D, Turbay E, Martinez-Arguelles G, Peñabaena-Niebles R. Properties and Characterization Techniques of Graphene Modified Asphalt Binders. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:955. [PMID: 36903833 PMCID: PMC10004843 DOI: 10.3390/nano13050955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Graphene is a carbon-based nanomaterial used in various industries to improve the performance of hundreds of materials. For instance, graphene-like materials have been employed as asphalt binder modifying agents in pavement engineering. In the literature, it has been reported that (in comparison to an unmodified binder) the Graphene Modified Asphalt Binders (GMABs) exhibit an enhanced performance grade, a lower thermal susceptibility, a higher fatigue life, and a decreased accumulation of permanent deformations. Nonetheless, although GMABs stand out significantly from traditional alternatives, there is still no consensus on their behavior regarding chemical, rheological, microstructural, morphological, thermogravimetric, and surface topography properties. Therefore, this research conducted a literature review on the properties and advanced characterization techniques of GMABs. Thus, the laboratory protocols covered by this manuscript are atomic force microscopy, differential scanning calorimetry, dynamic shear rheometer, elemental analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, thermogravimetric analysis, X-ray diffraction, and X-ray photoelectron spectroscopy. Consequently, the main contribution of this investigation to the state-of-the-art is the identification of the prominent trends and gaps in the current state of knowledge.
Collapse
Affiliation(s)
| | - Tatiana Navarro-Donado
- Department of Civil & Environmental Engineering, Universidad del Norte, Barranquilla 081001, Colombia
| | - Daniela Ortega-Martinez
- Department of Civil & Environmental Engineering, Universidad del Norte, Barranquilla 081001, Colombia
- School of Civil and Environmental Engineering, Technische Universität Dresden, 01069 Dresden, Germany
| | - Emilio Turbay
- Department of Civil & Environmental Engineering, Universidad del Norte, Barranquilla 081001, Colombia
| | | | - Rita Peñabaena-Niebles
- Department of Industrial Engineering, Universidad del Norte, Barranquilla 081001, Colombia
| |
Collapse
|
6
|
Adenine derived reactive dispersant and the enhancement of graphene based composites. J Colloid Interface Sci 2023; 640:91-99. [PMID: 36842421 DOI: 10.1016/j.jcis.2023.02.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
HYPOTHESIS Homogeneous dispersion of graphene is the precondition for constructing high performance graphene based composites. However, most of the current dispersants reported in literature still suffer excess usage to reach a desired graphene concentration. Residual of dispersant in composite may seriously affect its properties. Hence, it is expected to obtain effective dispersant with high reactivity to diminish its adverse impacts on graphene composites. EXPERIMENTS A highly reactive graphene dispersant (DSiA) was synthesized by grafting silanol groups (Si-OH) onto adenine. Molecular structure and the performance of the dispersant were systematically characterized. Composites were fabricated by direct writing of the graphene dispersion on various substrates, and their features were evaluated by resistance, solvent erosion and tensile testing. FINDINGS Graphene concentration can reach up to 6 mg mL-1 in the presents of DSiA at the weight ratio of 1:1 (DSiA: graphene). DSiA also exhibited good performance for stabilizing multi-walled carbon nanotubes (MWCNTs). Moreover, the dispersant is highly reactive. The graphene based composites showed good mechanical strength and excellent solvent resistance. Overall, the new dispersant provides an ideal choice to uniformly disperse graphene and suitable for fabricating high performance nanocarbon based composites.
Collapse
|
7
|
Eltabey RM, Abdelwahed FT, Eldefrawy MM, Elnagar MM. Fabrication of poly(maleic acid)-grafted cross-linked chitosan/montmorillonite nanospheres for ultra-high adsorption of anionic acid yellow-17 and cationic brilliant green dyes in single and binary systems. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129589. [PMID: 35853338 DOI: 10.1016/j.jhazmat.2022.129589] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
In this contribution, poly(maleic acid)-grafted cross-linked chitosan/montmorillonite composite nanospheres (PMAL-CTS/MMT) were synthesized via a facile approach for adsorption of organic dyes. The adsorption capacity of PMAL-CTS/MMT towards anionic acid yellow-17 (AY17) and cationic brilliant green (BG) was compared to PMAL-CTS, CTS/MMT, and MMT to emphasize the role of surface functional groups introduced by poly(maleic acid) and montmorillonite. Interestingly, the adsorption efficiency of PMAL-CTS/MMT nanocomposite towards both dyes in the single and binary systems was extremely high due to plenty of functional groups. The affinity of PMAL-CTS/MMT towards cationic and anionic dyes resulted from the feasible modulation of the surface charges as a function of the solution pH. The PMAL-CTS/MMT nanocomposite exhibited a maximum adsorption capacity of 518 and 1910 mg g-1 for AY17 and BG, respectively, which is higher than most of the adsorbents reported in recent literature studies. The proposed mechanism based on the characterization of PMAL-CTS/MMT after the adsorption highlighted that the adsorption is mainly controlled by electrostatic interaction, π - π interactions, and hydrogen bonding. More importantly, the PMAL-CTS/MMT nanocomposite was successfully applied to separate the AY17 and BG dyes from real-life aquatic environments. Collectively, the simple fabrication and superior adsorption performance reveal that PMAL-CTS/MMT has the potential to treat concomitant organic dyes effectively.
Collapse
Affiliation(s)
- Rania M Eltabey
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Fatma T Abdelwahed
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed M Eldefrawy
- Department of Chemistry, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt
| | - Mohamed M Elnagar
- Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081 Ulm, Germany; Inorganic Chemistry Department, National Research Centre, Tahrir Street, Dokki, 12622 Giza, Egypt.
| |
Collapse
|
8
|
Abd-Elhamid AI, Elgoud EMA, Emam SS, Aly HF. Superior adsorption performance of citrate modified graphene oxide as nano material for removal organic and inorganic pollutants from aqueous solution. Sci Rep 2022; 12:9204. [PMID: 35654871 PMCID: PMC9163102 DOI: 10.1038/s41598-022-13111-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
This work addressed one step preparation method to form a novel nano material composite of graphene oxide nanosheet (GO) functionalized with low-cost tri-sodium citrate (C), using, teteraethylorthosilicate (TEOS) as a cross-linker. The prepared composite (GO–C) was characterized using various advanced techniques. Among these techniques, the TGA provided interesting information concerning the functionalization process. Within this process, the (–OH) groups that located at the GO-surface were consumed in the modification process which leads to increase the thermal stability of the resulted composite. Cationic organic methylene blue (MB) and crystal violet (CV), and inorganic copper (Cu2+) and cobalt (Co2+) pollutants were displayed as a model to assess their removal performance by the developed composite (GO–C) from aqueous solution, through batch technique. According to Langmuir isotherm the GO–C present an excellent adsorption capacity for MB (222.22 mg g−1), CV (270.27 mg g−1), Cu2+ (163.4 mg g−1) and Co2+ (145.35 mg g−1) which were more than the adsorption capacities found in literature. Additionally, the regenerated composite presents higher removal ability than the original composite.
Collapse
Affiliation(s)
- A I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg Al-Arab, 21934, Alexandria, Egypt.
| | - E M Abu Elgoud
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Sh Sh Emam
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - H F Aly
- Hot Laboratories Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| |
Collapse
|
9
|
Alguacil FJ, López FA. Organic Dyes versus Adsorption Processing. Molecules 2021; 26:5440. [PMID: 34576914 PMCID: PMC8469008 DOI: 10.3390/molecules26185440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022] Open
Abstract
Even in the first quarter of the XXI century, the presence of organic dyes in wastewaters was a normal occurrence in a series of countries. As these compounds are toxic, their removal from these waters is a necessity. Among the separation technologies, adsorption processing appeared as one of the most widely used to reach this goal. The present work reviewed the most recent approaches (first half of the 2021 year) regarding the use of a variety of adsorbents in the removal of a variety of organic dyes of different natures.
Collapse
Affiliation(s)
| | - Félix A. López
- National Center for Metallurgical Researcher (CENIM), Spanish National Research Council (CSIC), Avda. Gregorio del Amo 8, 28040 Madrid, Spain;
| |
Collapse
|
10
|
Chen F, Wang R, Chen H, Lu H. Preparation of polyacrylamide/MXene hydrogels as highly-efficient electro-adsorbents for methylene blue removal. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1921207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fanglin Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Riyuan Wang
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Haoran Chen
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| | - Hongdian Lu
- School of Energy, Materials and Chemical Engineering, Hefei University, Hefei, People’s Republic of China
| |
Collapse
|