1
|
Nosakhare Amenaghawon A, Lewis Anyalewechi C, Uyi Osazuwa O, Agbovhimen Elimian E, Oshiokhai Eshiemogie S, Kayode Oyefolu P, Septya Kusuma H. A Comprehensive Review of Recent Advances in the Synthesis and Application of Metal-Organic Frameworks (MOFs) for the Adsorptive Sequestration of Pollutants from Wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Yuan Q, Sui M, Qin C, Zhang H, Sun Y, Luo S, Zhao J. Migration, Transformation and Removal of Macrolide Antibiotics in The Environment: A Review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26045-26062. [PMID: 35067882 DOI: 10.1007/s11356-021-18251-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Macrolide antibiotics (MAs), as a typical emerging pollutant, are widely detected in environmental media. When entering the environment, MAs can interfere with the growth, development and reproduction of organisms, which has attracted extensive attention. However, there are few reviews on the occurrence characteristics, migration and transformation law, ecotoxicity and related removal technologies of MAs in the environment. In this work, combined with the existing relevant research, the migration and transformation law and ecotoxicity characteristics of MAs in the environment are summarized, and the removal mechanism of MAs is clarified. Currently, most studies on MAs are based on laboratory simulation experiments, and there are few studies on the migration and transformation mechanism between multiphase states. In addition, the cost of MAs removal technology is not satisfactory. Therefore, the following suggestions are put forward for the future research direction. The migration and transformation process of MAs between multiphase states (such as soil-water-sediment) should be focused on. Apart from exploring the new treatment technology of MAs, the upgrading and coupling of existing MAs removal technologies to meet emission standards and reduce costs should also be concerned. This review provides some theoretical basis and data support for understanding the occurrence characteristics, ecotoxicity and removal mechanism of MAs.
Collapse
Affiliation(s)
- Qingjiang Yuan
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Meiping Sui
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Chengzhi Qin
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Hongying Zhang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Siyi Luo
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Jianwei Zhao
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| |
Collapse
|
3
|
Ling F, Xiao X, Li Y, Li W. A Zn/Co bimetal zeolitic imidazolate framework material as a catalyst to activate persulfates to degrade tylosin in aqueous solutions. NEW J CHEM 2022. [DOI: 10.1039/d2nj02846h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The bimetallic catalyst ZIF-11(Zn/Co)-2 activates persulfates and has an excellent removal effect on tylosin in aqueous solutions.
Collapse
Affiliation(s)
- Fei Ling
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Yanjun Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Wenfang Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| |
Collapse
|
4
|
Selective adsorption of dyes and pharmaceuticals from water by UiO metal–organic frameworks: A comprehensive review. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Zhang Z, Chen Y, Hu C, Zuo C, Wang P, Chen W, Ao T. Efficient removal of tetracycline by a hierarchically porous ZIF-8 metal organic framework. ENVIRONMENTAL RESEARCH 2021; 198:111254. [PMID: 33965392 DOI: 10.1016/j.envres.2021.111254] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Most reported metal organic frameworks (MOFs) have microporous structures and defective active sites, limiting their practical application to macromolecular substances. A hierarchical porous zeolitic imidazolate framework-8 (ZIF-8) was prepared using poly(diallyldimethylammonium chloride) (PDDA) as a structure-directing agent under facile "aqueous room-temperature" conditions to increase the mass transfer and adsorption capacity tetracycline hydrochloride (TCH). The ZIF-8 pore structure and morphology were synchronously tuned by controlling the PDDA molecular weight and dosage. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Bruner-Emmett-Teller (BET), scanning electron microscopy (SEM), NH3-temperature-programmed desorption (NH3-TPD) and adsorption results revealed abundant pore structures and open metal sites in the prepared materials, along with excellent TCH adsorption performance compared with ZIF-8, despite decreased BET surface areas. Initial screens revealed large adsorption capacities of hierarchical porous ZIF-8P3(4) (976.8 mg g-1) due to the presence of more abundant unsaturated metal sites than ZIF-8 and novel hierarchical porous structures. Therefore, TCH adsorption on ZIF-8 and ZIF-8P3(4), including the kinetics, isotherms, thermodynamics and pH effect, was studied. The adsorption process follows pseudo-second-order kinetics and the Freundlich models better, indicating multilayer adsorption of TCH on the surface of the two absorbents. Adsorption behavior test, FTIR, XPS, BET and XRD results show that TCH adsorption on ZIF-8 and ZIF-8P3(4) most likely involves coordination bonds, electrostatic and π-π interactions, hydrogen bonds, and pore-filling effects. This study provides new insights into the template preparation of MOFs with high adsorption performance as potentially economical adsorbents to remove organic matter from contaminated water.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Yi Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Chengyue Hu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Can Zuo
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Peng Wang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Wenqing Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China.
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, China; College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
| |
Collapse
|