1
|
Röcker D, Dietmann K, Nägler L, Su X, Fraga-García P, Schwaminger SP, Berensmeier S. Design and characterization of an electrochemically-modulated membrane chromatography device. J Chromatogr A 2024; 1718:464733. [PMID: 38364620 DOI: 10.1016/j.chroma.2024.464733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Membrane separations offer a compelling alternative to traditional chromatographic methods by overcoming mass transport limitations. We introduce an additional degree of freedom in modulating membrane chromatography by using metalized membranes in a potential-driven process. Investigating the impact of a gold coating on membrane characteristics, the sputtered gold layer enhances the surface conductivity with stable electrochemical behavior. However, this comes at the expense of reduced permeability, wettability, and static binding capacity (∼ 474 µg g-1 of maleic acid). The designed device displayed a homogenous flow distribution, and the membrane electrodes exhibit predominantly capacitive behavior during potential application. Modulating the electrical potential during the adsorption and desorption phase strongly influenced the binding and elution behavior of anion-exchange membranes. Switching potentials between ±1.0 V vs. Ag/AgCl induces desorption, confirming the process principle. Elution efficiency reaches up to 58 % at -1.0 V vs. Ag/AgCl in the desorption phase without any alteration of the mobile phase. Increasing the potential perturbation ranging from +1.0 V to -1.0 V vs. Ag/AgCl resulted in reduced peak width and improved elution behavior, demonstrating the feasibility of electrochemically-modulated membrane chromatography. The developed process has great potential as a gentle and sustainable separation step in the biotechnological and chemical industry.
Collapse
Affiliation(s)
- Dennis Röcker
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany; Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, Garching 85748, Germany
| | - Katharina Dietmann
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Larissa Nägler
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Paula Fraga-García
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Sebastian P Schwaminger
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany; Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, Garching 85748, Germany.
| |
Collapse
|
2
|
Riemann A, Rankin L, Henry D. Atomic Charge Dependency of Spiropyran/Merocyanine Adsorption as a Precursor to Surface Isomerization Reactions. ACS OMEGA 2024; 9:798-810. [PMID: 38222550 PMCID: PMC10785610 DOI: 10.1021/acsomega.3c06712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
This computational study investigates the adsorption of various spiropyran and merocyanine isomers on a NaCl substrate using a combination of density functional theory (DFT) and molecular mechanics (MM) calculations. Four different charge methods were used to determine the partial atomic charges for the adsorbate molecules, including Mulliken population analysis and three electrostatic potential (ESP) methods (Merz-Kollman, ChelpG, and Hu-Lu-Yang), while three different force fields (AMBER 3, CHARMM 27, and MM+) were employed for the MM calculations. The results show that the various DFT charge methods produced similar outcomes for the molecules' partial atomic charges, with some exceptions for individual atoms and methods. Additionally, it was found that the ESP charge methods were more sensitive to the conformer orientation than the Mulliken approach. The adsorption behavior of merocyanine conformers with the central bond in trans orientation (T-conformers) was similar for various configurations, with the molecule adsorbing mostly flat with its aromatic rings almost parallel to the substrate. However, C-conformers (with their central bond in cis orientation) and spiropyran isomers exhibited inconsistent adsorption behavior, mostly because only some of the aromatic rings contributed to the adsorption behavior. Due to additional van der Waals interactions of more aromatic rings, the adsorption energies for T-conformers are consistently 0.2-0.3 eV higher than for C-conformers and for spiropyran. The study found that the adsorption geometries and energies of stable T-conformers were independent of the partial atomic charge scheme and force field used, and C-conformers show parameter-dependent behavior upon adsorption, leading to metastable configurations. These findings indicate viable pathways during the spiropyran-merocyanine isomerization reactions. Therefore, the results provide initial insights into the possibility of switching spiropyran isomers into merocyanine isomers and vice versa after adsorption onto substrates.
Collapse
Affiliation(s)
- Andreas Riemann
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| | - Lauren Rankin
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| | - Dylan Henry
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| |
Collapse
|
3
|
Mousavi SZ, Shadman HR, Habibi M, Didandeh M, Nikzad A, Golmohammadi M, Maleki R, Suwaileh WA, Khataee A, Zargar M, Razmjou A. Elucidating the Sorption Mechanisms of Environmental Pollutants Using Molecular Simulation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Seyedeh Zahra Mousavi
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Hamid Reza Shadman
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Meysam Habibi
- Department of Chemical Engineering, University of Tehran, Tehran, 6718773654, Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Arash Nikzad
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, 3313193685, Iran
| | - Wafa Ali Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10 Turkey
| | - Masoumeh Zargar
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Yahyavi M, Badalkhani-Khamseh F, Hadipour NL. Folic acid functionalized carbon nanotubes as pH controlled carriers of fluorouracil: Molecular dynamics simulations. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Yi P, Zuo X, Liang N, Wu M, Chen Q, Zhang L, Pan B. Molecular clusters played an important role in the adsorption of polycyclic aromatic hydrocarbons (PAHs) on carbonaceous materials. CHEMOSPHERE 2022; 302:134772. [PMID: 35526686 DOI: 10.1016/j.chemosphere.2022.134772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most frequently detected hydrophobic organic contaminants (HOCs) in the environment. They may form clusters because of the strong hydrophobic and π-π electron-donor-acceptor (EDA) interactions among PAHs molecules. However, previous experimental studies and theoretical simulations generally ignored the impact of molecular clusters on the adsorption, which may result in the misunderstanding of the environmental fate and risk. In this work, naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) were selected to investigate intermolecular interaction as well as the consequent impact on their adsorption on graphene. The density field of C atoms in equilibrium configurations of self-interacted PAHs suggested that the formation of PAHs molecular clusters was a spontaneous process, and was favored in solvents with stronger polarity and for PAHs with more benzene rings. It should be noted that the molecular dynamics simulations with the initial state of molecular clusters matched better with the published experimental results compared with those of individual PAHs. The formed compact PAHs clusters in polar solvents increased the apparent PAHs adsorption, because of their higher hydrophobic and π-π EDA interactions. This study emphasized that the self-interaction of PAHs should be carefully considered in both experimental and theoretical simulation studies.
Collapse
Affiliation(s)
- Peng Yi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Xiangzhi Zuo
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Ni Liang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Bo Pan
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming, 650500, Yunnan, China.
| |
Collapse
|
6
|
Design of 3D Carbon Nanotube Monoliths for Potential-Controlled Adsorption. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design of 3D monoliths provides a promising opportunity to scale the unique properties of singular carbon nanotubes to a macroscopic level. However, the synthesis of carbon nanotube monoliths is often characterized by complex procedures and additives impairing the later macroscopic properties. Here, we present a simple and efficient synthesis protocol leading to the formation of free-standing, stable, and highly conductive 3D carbon nanotube monoliths for later application in potential-controlled adsorption in aqueous systems. We synthesized monoliths displaying high tensile strength, excellent conductivity (up to 140 S m−1), and a large specific surface area (up to 177 m2 g−1). The resulting monoliths were studied as novel electrode materials for the reversible electrosorption of maleic acid. The process principle was investigated using chronoamperometry and cyclic voltammetry in a two-electrode setup. A stable electrochemical behavior was observed, and the synthesized monoliths displayed capacitive and faradaic current responses. At moderate applied overpotentials (± 500 mV vs. open circuit potential), the monolithic electrodes showed a high loading capacity (~20 µmol g−1) and reversible potential-triggered release of the analyte. Our results demonstrate that carbon nanotube monoliths can be used as novel electrode material to control the adsorption of small organic molecules onto charged surfaces.
Collapse
|
7
|
Wagner R, Winger S, Franzreb M. Predicting the potential of capacitive deionization for the separation of pH-dependent organic molecules. Eng Life Sci 2021; 21:589-606. [PMID: 34690631 PMCID: PMC8518579 DOI: 10.1002/elsc.202100037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/07/2021] [Accepted: 07/14/2021] [Indexed: 11/14/2022] Open
Abstract
One of the main steps in the biotechnological production of chemical building blocks, such as, e.g. bio-based succinic acid which is used for lubricants, cosmetics, food, and pharmaceuticals, is the isolation and purification of the target molecule. A new approach to isolate charged, bio-based chemicals is by electrosorption onto carbon surfaces. In contrast to ion exchange, electrosorption does not require additional chemicals for elution and regeneration. However, while the electrosorption of inorganic salts is well understood and in commercial use, the knowledge about electrosorption of weak organic acids including the strong implications of the pH-dependent dissociation and their affinity towards physical adsorption must be expanded. Here, we show a detailed discussion of the main pH-dependent effects determining the achievable charge efficiencies and capacities. An explicit set of equations allows the fast prediction of the named key figures for constant voltage and constant current operation. The calculated and experimental results obtained for the electrosorption of maleic acid show that the potential-free adsorption of differently protonated forms of the organic acid play a dominating role in the process. At pH 8 and a voltage threshold of 1.3 V, charge efficiencies of 25% and capacities around 40 mmol/kg could be reached for a constant current experiment. While this capacity is clearly below that of ion exchange resins, the required carbon materials are inexpensive and energy costs are only about 0.013 €/mol. Therefore, we anticipate that electrosorption has the potential to become an interesting alternative to conventional unit operations for the isolation of charged target molecules.
Collapse
Affiliation(s)
- Robin Wagner
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Sebastian Winger
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Matthias Franzreb
- Institute of Functional InterfacesKarlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
8
|
Yi P, Zuo X, Lang D, Wu M, Dong W, Chen Q, Zhang L. Competitive adsorption of methanol co-solvent and dioctyl phthalate on functionalized graphene sheet: Integrated investigation by molecular dynamics simulations and quantum chemical calculations. J Colloid Interface Sci 2021; 605:354-363. [PMID: 34332409 DOI: 10.1016/j.jcis.2021.07.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022]
Abstract
HYPOTHESIS Organic co-solvents, which are universally employed in adsorption studies of hydrophobic organic chemicals (HOCs), can inhibit HOC adsorption by competing for active sites on the adsorbent. The adsorbent structure can influence co-solvent interference of HOC adsorption; however, this effect remains unclear, leading to an incomplete understanding of the adsorption mechanism. EXPERIMENTS In this study, dioctyl phthalate (DOP) was used to investigate competitive adsorption on functionalized graphene sheet in a water-methanol co-solvent system through molecular dynamics simulations and quantum chemical calculations. FINDINGS The simulations showed that the functional groups in the graphene defects had a strong adsorption affinity for methanol. The adsorbed methanol occupied a large number of active sites at the graphene center, thereby weakening DOP adsorption. However, the methanol adsorbed at the graphene edges could not compete with DOP for the active sites. -COOH had the strongest binding affinity for methanol among the functional groups and thus predominantly controlled the interaction between graphene and methanol. This study makes an innovative contribution toward understanding the competitive adsorption of methanol and DOP on functionalized graphene sheet, especially in visualizing the competition for active sites, and provides theoretical guidance for the removal of HOCs and practical application of graphene.
Collapse
Affiliation(s)
- Peng Yi
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Xiangzhi Zuo
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Di Lang
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Min Wu
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Wei Dong
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China
| | - Quan Chen
- Yunnan Provincial Key Lab of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, Yunnan, China.
| | - Lijuan Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
9
|
Bag S, Rauwolf S, Schwaminger SP, Wenzel W, Berensmeier S. DNA Binding to the Silica: Cooperative Adsorption in Action. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5902-5908. [PMID: 33951395 DOI: 10.1021/acs.langmuir.1c00381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The adsorption and desorption of nucleic acid to a solid surface is ubiquitous in various research areas like pharmaceutics, nanotechnology, molecular biology, and molecular electronics. In spite of this widespread importance, it is still not well understood how the negatively charged deoxyribonucleic acid (DNA) binds to the negatively charged silica surface in an aqueous solution. In this article, we study the adsorption of DNA to the silica surface using both modeling and experiments and shed light on the complicated binding (DNA to silica) process. The binding agent mediated DNA adsorption was elegantly captured by cooperative Langmuir model. Bulk-depletion experiments were performed to conclude the necessity of a positively charged binding agent for efficient DNA binding, which complements the findings from the model. A profound understanding of DNA binding will help to tune various processes for efficient nucleic acid extraction and purification. However, this work goes beyond the DNA binding and can shed light on other binding agent mediated surface-surface, surface-molecule, molecule-molecule interaction.
Collapse
Affiliation(s)
- Saientan Bag
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Stefan Rauwolf
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| | - Sebastian P Schwaminger
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz-1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Sonja Berensmeier
- Bioseparation Engineering Group, Department of Mechanical Engineering, Technical University of Munich (TUM), Munich 85748, Germany
| |
Collapse
|