1
|
Mohapatra PP, Singh HK, Dobbidi P. Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials. Adv Colloid Interface Sci 2025; 337:103381. [PMID: 39700971 DOI: 10.1016/j.cis.2024.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Heightened levels of electromagnetic (EM) radiation emitted by electronic devices, communication equipment, and information processing technologies have become a significant concern recently. So, substantial efforts have been devoted for developing novel materials having high EM absorption properties. This critical review article provides an overview of the advancements in understanding and developing such materials. It delves into the interaction between EM radiation and absorbing materials, focusing on phenomena like multiple reflections, scattering, and polarization. Additionally, the study discusses various types of losses that impact microwave absorber performance, like magnetic loss, and dielectric loss. Each of these losses has distinct implications for microwave absorbers' effectiveness. Furthermore, the review offers detailed insights into different microwave-absorbing materials, such as metal composites, magnetic materials, conducting polymers, and carbonaceous materials (composites with carbon fiber, porous carbon, carbon nanotube, graphene oxide, etc.). Overall, it highlights the progress achieved in microwave-absorbing materials and emphasizes optimizing various loss mechanisms for enhanced performance.
Collapse
Affiliation(s)
- Prajna P Mohapatra
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Hodam Karnajit Singh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pamu Dobbidi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Yang X, Lv S, Gan L, Wang C, Wang Z, Zhang Z. Single-Fe-Atom Catalyst for Sensitive Electrochemical Detection of Caffeic Acid. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53189-53197. [PMID: 37946326 DOI: 10.1021/acsami.3c11378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A single-atom catalyst (Fe SAs/-N-C) with excellent stability and conductivity was strategically fabricated via high-temperature calcination using the NiFe layered double hydroxide (LDH)/ZIF-8 composite as precursors. With the help of Ni as a catalyst, a great number of carbon nanotubes were produced whereby the isolated carbon bulks were interconnected to form an "island-bridge"-like 3D network structure, which greatly enhanced the exposure of active sites and the electron transfer. Accordingly, caffeic acid (CA) with versatile biological and pharmacological activities was chosen as the model analyte. The Fe SAs/-N-C with Fe-N4 as the catalytic active site was employed to establish the electrochemical sensing of CA with satisfactory sensitivity, selectivity, and long-term stability. This work expands the application range of single-atom catalysts and contributes a significant reference for the synthesis of hybrid double-atom catalysts.
Collapse
Affiliation(s)
- Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Sijia Lv
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Liyong Gan
- Institute for Structure and Function and Department of Physics, Chongqing University, Chongqing 400030, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhonghai Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Jiao Z, Hu J, Ma M, Liu Y, Zhao J, Wang X, Luan S, Zhang L. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. J Colloid Interface Sci 2023; 650:2014-2023. [PMID: 37531668 DOI: 10.1016/j.jcis.2023.07.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
In recent years, electromagnetic pollution has become more and more serious, and there is an urgent need for microwave absorbing materials with superior performance. Prussian blue analogue (PBA) is a metal organic framework material with the advantages of diverse morphology and tunable composition. Therefore, PBA has attracted a lot of attention in the field of microwave absorption. In this work, PBA was coated on the surface of carbon composites by hydrothermal method, and then PPy was compounded on its surface after carbonization treatment to construct hierarchical core-shell CoC@CoFe/C@PPy fibers. The fibers have Co-doped C composites as the core and CoFe/C decorated with PPy as the shell. This unique hierarchical structure and various microwave absorption mechanisms are described in detail. The microwave absorption performance is optimized by adjusting the filling of the sample. The best microwave absorption performances are achieved at 25 wt% filling of CoC@CoFe/C@PPy. At a thickness of just 1.69 mm, CoC@CoFe/C@PPy fiebrs have a minimum reflection loss (RLmin) of -64.32 dB. When the thickness is 1.88 mm, CoC@CoFe/C@PPy achieves a maximum effective absorption bandwidth (EABmax) of 5.38 GHz. The results indicate that the CoC@CoFe/C@PPy composite fibers have a great potential in the field of microwave absorption.
Collapse
Affiliation(s)
- Zhengguo Jiao
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Jinhu Hu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China.
| | - Yanyan Liu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Jindi Zhao
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Xingyue Wang
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Sen Luan
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Ling Zhang
- Centre For Engineering Test & Appraise, Qingdao University of Technology, Qingdao 266033, People's Republic of China.
| |
Collapse
|
4
|
Lin J, Wu Q, Qiao J, Zheng S, Liu W, Wu L, Liu J, Zeng Z. A review on composite strategy of MOF derivatives for improving electromagnetic wave absorption. iScience 2023; 26:107132. [PMID: 37456858 PMCID: PMC10338214 DOI: 10.1016/j.isci.2023.107132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
To address the electromagnetic wave (EMW) pollution issues caused by the development of electronics and wireless communication technology, it is urgent to develop efficient EMW-absorbing materials. With controllable composition, diverse structure, high porosity, and large specific surface area, metal-organic framework (MOF) derivatives have sparked the infinite passion and creativity of researchers in the electromagnetic field. Against the challenges of poor inherent impedance matching and insufficient attenuation capability of pure MOF derivative, designing and developing MOF derivative-based composites by compounding MOF with other materials, such as graphene, CNTs, MXene, and so on, has been an effective strategy for constructing high-efficiency EMW absorbing materials. This review systematically expounds the research progress of MOF derivative-based composite strategies, and discusses the challenges and opportunities faced by MOF derivatives in the field of EMW absorption. This work can provide some good ideas for researchers to design and prepare high-efficiency MOF-based EMW absorbing materials in applications of next-generation electronics and aerospace.
Collapse
Affiliation(s)
- Jingpeng Lin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Qilei Wu
- Science and Technology on Electromagnetic Compatibility Laboratory, China Ship Development and Design Centre, Wuhan 430064, PR China
| | - Jing Qiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Sinan Zheng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Wei Liu
- Institute of Crystal Materials, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- Shenzhen Research Institute of Shandong University, Shenzhen 518063, PR China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
| | - Zhihui Zeng
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, PR China
- Suzhou Research Institute of Shandong University, Suzhou 215123, PR China
| |
Collapse
|
5
|
Sun H, Yi SQ, Li N, Zou KK, Li J, Xu L, Wang YY, Yan DX, Li ZM. Polyvinylpyrrolidone induced uniform coating of nickel nanoparticles on carbon nanotubes for efficient microwave absorption. J Colloid Interface Sci 2023; 649:501-509. [PMID: 37356151 DOI: 10.1016/j.jcis.2023.06.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The impedance matching performance of carbon nanotubes (CNTs) can be effectively enhanced by developing a uniform magnetic impedance matching layer, which can take on critical significance in achieving the desirable microwave absorption (MA) performance. To obtain a uniform coating of Nickel (Ni) nanoparticles on CNTs, several methods have been developed (e.g., the γ-irradiation technique, electroless deposition, as well as microwave welding method). However, the intricate and complicated conditions of the above-mentioned methods limit their wide application. Therefore, controlling the distribution of Ni nanoparticles with the aid of a concise and effective method remains a great challenge. Herein, in view of the uniform dispersion effect of polyvinylpyrrolidone (PVP) on CNTs and its complexation with Ni ions, uniform coating of Ni nanoparticles on CNTs is well developed after it is introduced in the hydrothermal process. The prepared Ni/CNTs composites exhibited excellent MA performance in comparison with those of reported Ni/CNTs composites for the ideal impedance matching performance and microwave attenuation ability. When the filler content was only 15 wt%, the minimum reflection loss (RLmin) reached -39.5 dB, and the effective bandwidth (EB) with RL < -10 dB reached 5.2 GHz at the thickness of 1.15 mm. A scalable strategy of regulating the distribution of Ni nanoparticles and preparing a lightweight microwave absorber based on CNTs was developed in this study, which can serve as a vital guideline for preparing novel MA composite materials.
Collapse
Affiliation(s)
- He Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shuang-Qin Yi
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Nan Li
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Kang-Kang Zou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Jie Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China.
| | - Yue-Yi Wang
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China.
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Guo Y, Chang Q, Shi Z, Xie J, Yun J, Zhang L, Wu H. Regulating conduction and polarization losses by adjusting bonded N in N-doped Cu/CuO/C composites. J Colloid Interface Sci 2023; 639:444-453. [PMID: 36827910 DOI: 10.1016/j.jcis.2023.02.093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Conduction and polarization losses are the main forms of dielectric loss, and regulating these mechanisms is key to obtaining favorable electromagnetic wave absorption performance. In this study, the conversion of graphite N and pyridine N in Cu-based metal-organic framework (MOF)-derived composites was adopted to modulate conduction and polarization losses by tuning the pyrolysis temperature and Cu salt concentration. The results show that increasing the pyrolysis temperature facilitates the conversion of pyridine N to graphite N, which is beneficial for conduction loss. Moreover, increasing the Cu concentration promotes the transformation of pyridine N to graphite N as well as, and then promotes the reverse conversion of graphite N to pyridine N, which is conducive to defect-induced polarization. The unique layered Cu/CuO/C composite obtained at 700 °C with a moderate Cu content exhibited the optimal performance with an effective absorption bandwidth of 5.5 GHz (11.6 ∼ 17.1 GHz) at an ultra-thin thickness of 1.56 mm. This is owed to its favorable impedance matching, significant conduction loss, and polarization loss (defect-induced polarization and interfacial polarization). This study provides a novel strategy for regulating conduction and polarization losses.
Collapse
Affiliation(s)
- Yanlin Guo
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qing Chang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China; College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Yan'an University, Yan'an 716000, China
| | - Zhaoxiaohan Shi
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiayuan Xie
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jijun Yun
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
7
|
Zhou Z, Zhu Q, Liu Y, Zhang Y, Jia Z, Wu G. Construction of Self-Assembly Based Tunable Absorber: Lightweight, Hydrophobic and Self-Cleaning Properties. NANO-MICRO LETTERS 2023; 15:137. [PMID: 37245198 PMCID: PMC10225461 DOI: 10.1007/s40820-023-01108-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/29/2023]
Abstract
Although multifunctional aerogels are expected to be used in applications such as portable electronic devices, it is still a great challenge to confer multifunctionality to aerogels while maintaining their inherent microstructure. Herein, a simple method is proposed to prepare multifunctional NiCo/C aerogels with excellent electromagnetic wave absorption properties, superhydrophobicity, and self-cleaning by water-induced NiCo-MOF self-assembly. Specifically, the impedance matching of the three-dimensional (3D) structure and the interfacial polarization provided by CoNi/C as well as the defect-induced dipole polarization are the primary contributors to the broadband absorption. As a result, the prepared NiCo/C aerogels have a broadband width of 6.22 GHz at 1.9 mm. Due to the presence of hydrophobic functional groups, CoNi/C aerogels improve the stability in humid environments and obtain hydrophobicity with large contact angles > 140°. This multifunctional aerogel has promising applications in electromagnetic wave absorption, resistance to water or humid environments.
Collapse
Affiliation(s)
- Zehua Zhou
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Qianqian Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yue Liu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yan Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Zirui Jia
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
8
|
Hayat A, Sohail M, Ali H, Taha TA, Qazi HIA, Ur Rahman N, Ajmal Z, Kalam A, Al-Sehemi AG, Wageh S, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. Recent Advances and Future Perspectives of Metal-Based Electrocatalysts for Overall Electrochemical Water Splitting. CHEM REC 2023; 23:e202200149. [PMID: 36408911 DOI: 10.1002/tcr.202200149] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/15/2022] [Indexed: 11/22/2022]
Abstract
Recently, the growing demand for a renewable and sustainable fuel alternative is contingent on fuel cell technologies. Even though it is regarded as an environmentally sustainable method of generating fuel for immediate concerns, it must be enhanced to make it extraordinarily affordable, and environmentally sustainable. Hydrogen (H2 ) synthesis by electrochemical water splitting (ECWS) is considered one of the foremost potential prospective methods for renewable energy output and H2 society implementation. Existing massive H2 output is mostly reliant on the steaming reformation of carbon fuels that yield CO2 together with H2 and is a finite resource. ECWS is a viable, efficient, and contamination-free method for H2 evolution. Consequently, developing reliable and cost-effective technology for ECWS was a top priority for scientists around the globe. Utilizing renewable technologies to decrease total fuel utilization is crucial for H2 evolution. Capturing and transforming the fuel from the ambient through various renewable solutions for water splitting (WS) could effectively reduce the need for additional electricity. ECWS is among the foremost potential prospective methods for renewable energy output and the achievement of a H2 -based economy. For the overall water splitting (OWS), several transition-metal-based polyfunctional metal catalysts for both cathode and anode have been synthesized. Furthermore, the essential to the widespread adoption of such technology is the development of reduced-price, super functional electrocatalysts to substitute those, depending on metals. Many metal-premised electrocatalysts for both the anode and cathode have been designed for the WS process. The attributes of H2 and oxygen (O2 ) dynamics interactions on the electrodes of water electrolysis cells and the fundamental techniques for evaluating the achievement of electrocatalysts are outlined in this paper. Special emphasis is paid to their fabrication, electrocatalytic performance, durability, and measures for enhancing their efficiency. In addition, prospective ideas on metal-based WS electrocatalysts based on existing problems are presented. It is anticipated that this review will offer a straight direction toward the engineering and construction of novel polyfunctional electrocatalysts encompassing superior efficiency in a suitable WS technique.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, 321004, Jinhua, Zhejiang, P. R. China.,College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, 313001, Huzhou, P. R. China
| | - Hamid Ali
- Multiscale Computational Materials Facility, Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, 350100, Fuzhou, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, PO Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, 400065, Chongqing, China
| | - Naveed Ur Rahman
- Department of Physics, Bacha Khan University Charsadda, KP, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, P. R. China
| | - Abul Kalam
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - S Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, 32952, Menouf, Egypt
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Arkom Palamanit
- Energy Technology Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., 90110, Hat Yai, Songkhla, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, 02600, Cawangan Perlis, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, 82524, Sohag, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, 321004, Jinhua, China
| |
Collapse
|
9
|
Baikalov N, Rakhimbek I, Konarov A, Mentbayeva A, Zhang Y, Bakenov Z. Catalytic effects of Ni nanoparticles encapsulated in few-layer N-doped graphene and supported by N-doped graphitic carbon in Li–S batteries †. RSC Adv 2023; 13:9428-9440. [PMID: 36968061 PMCID: PMC10031747 DOI: 10.1039/d3ra00891f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Although lithium–sulfur batteries possess the highest theoretical capacity and lowest cost among all known rechargeable batteries, their commercialization is still hampered by the intrinsic disadvantages of low conductivity of sulfur and polysulfide shuttle effect, which is most critical. Considerable research efforts have been dedicated to solving these difficulties for every part of Li–S batteries. Separator modification with metal electrocatalysts is a promising approach to overcome the major part of these disadvantages. This work focuses on the development of Ni nanoparticles encapsulated in a few-layer nitrogen-doped graphene supported by nitrogen-doped graphitic carbon (Ni@NGC) with different metal loadings as separator modifications. The effect of metal loading on the Li–S electrochemical reaction kinetics and performance of Li–S batteries was investigated. Controlling the Ni loading allowed for the modulation of the surface area-to-metal content ratio, which influenced the reaction kinetics and cycling performance of Li–S cells. Among the separators with different Ni loadings, the one with 9 wt% Ni exhibited the most efficient acceleration of the polysulfide redox reaction and minimized the polysulfide shuttling effect. Batteries with this separator retained 77.2% capacity after 200 cycles at 0.5C, with a high sulfur loading of ∼4.0 mg cm−2, while a bare separator showed 51.3% capacity retention after 200 cycles under the same conditions. This work reveals that there is a vast utility space for carbon-encapsulated Ni nanoparticles in electrochemical energy storage devices with optimal selection and rational design. Ni@NGC with different contents of Ni coated onto the surface of commercial separators effectively suppresses the polysulfide shuttle effect and enhances the electrochemical reaction kinetics and overall performance of a Li–S battery.![]()
Collapse
Affiliation(s)
- Nurzhan Baikalov
- Department of Chemical and Materials Engineering, Nazarbayev UniversityAstana 010000Kazakhstan
| | - Islam Rakhimbek
- National Laboratory Astana, Nazarbayev UniversityAstana 010000Kazakhstan
| | - Aishuak Konarov
- Department of Chemical and Materials Engineering, Nazarbayev UniversityAstana 010000Kazakhstan
| | - Almagul Mentbayeva
- Department of Chemical and Materials Engineering, Nazarbayev UniversityAstana 010000Kazakhstan
| | - Yongguang Zhang
- School of Materials Science and Engineering, State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of TechnologyTianjin 300130China
| | - Zhumabay Bakenov
- Department of Chemical and Materials Engineering, Nazarbayev UniversityAstana 010000Kazakhstan
- National Laboratory Astana, Nazarbayev UniversityAstana 010000Kazakhstan
| |
Collapse
|
10
|
Gao Z, Iqbal A, Hassan T, Zhang L, Wu H, Koo CM. Texture Regulation of Metal-Organic Frameworks, Microwave Absorption Mechanism-Oriented Structural Optimization and Design Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204151. [PMID: 36253151 PMCID: PMC9762306 DOI: 10.1002/advs.202204151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/15/2022] [Indexed: 05/12/2023]
Abstract
Texture regulation of metal-organic frameworks (MOFs) is essential for controlling their electromagnetic wave (EMW) absorption properties. This review systematically summarizes the recent advancements in texture regulation strategies for MOFs, including etching and exchange of central ions, etching and exchange of ligands, chemically induced self-assembly, and MOF-on-MOF heterostructure design. Additionally, the EMW absorption mechanisms in approaches based on structure-function dependencies, including nano-micro topological engineering, defect engineering, interface engineering, and hybrid engineering, are comprehensively explored. Finally, current challenges and future research orientation are proposed. This review aims to provide new perspectives for designing MOF-derived EMW-absorption materials to achieve essential breakthroughs in mechanistic investigations in this promising field.
Collapse
Affiliation(s)
- Zhenguo Gao
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Aamir Iqbal
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Tufail Hassan
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| | - Limin Zhang
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Hongjing Wu
- MOE Key Laboratory of Material Physics and Chemistry under ExtraordinaryNorthwestern Polytechnical UniversityXi'an710072China
| | - Chong Min Koo
- School of Advanced Materials Science and EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Chemical EngineeringSungKyunKwan UniversitySeobu‐ro 2066, Jangan‐guSuwon‐siGyeonggi‐do16419Republic of Korea
| |
Collapse
|
11
|
Construction of Dual-Shell Mo 2C/C Microsphere towards Efficient Electromagnetic Wave Absorption. Int J Mol Sci 2022; 23:ijms232314502. [PMID: 36498829 PMCID: PMC9738143 DOI: 10.3390/ijms232314502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022] Open
Abstract
Carbon-based carbides have attracted tremendous attention for electromagnetic energy attenuation due to their adjustable dielectric properties, oxidation resistance, and good chemical stability. Herein, we reasonably regulate the growth of dopamine hydrochloride on the surface of the Mo-glycerate (Mo-GL) microsphere and then transform the resultant Mo-polydopamine (Mo-PD) microsphere into a dual-shell Mo2C/C (DS-Mo2C/C) microsphere in a high-temperature pyrolysis process under an inert atmosphere. It is found that the pyrolysis temperature plays an important role in the graphitization degree of the carbon matrix and internal architecture. The fabrication of a dual-shell structure can be propitious to the optimization of impedance matching, and the introduction of Mo2C nanoparticles also prompts the accumulation of polarization loss. When the pyrolysis temperature reaches 800 °C, the optimized composite of DS-Mo2C/C-800 exhibits good EM absorption performance in the frequency range of 2.0-18.0 GHz. DS-Mo2C/C-800's qualified bandwidth can reach 4.4 GHz at a matching thickness of 1.5 mm, and the integrated qualified bandwidth (QBW) even exceeds 14.5 GHz with a thickness range of 1.5-5.0 mm. The positive effects of the dual-shell structure and Mo2C nanoparticles on EM energy attenuation may render the DS-Mo2C/C microsphere as a promising candidate for lightweight and broad bandwidth EM absorption materials in the future.
Collapse
|
12
|
Guo S, Ren D, Huang Y, Wang Z, Zhang S, Zhang X, Gong X. A novel carbonized derivative of Fe-Cu bimetallic organic framework (Fe-Cu-MOF@C): preparation and optimization. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2701-2717. [PMID: 36450681 DOI: 10.2166/wst.2022.363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A carbon derivative with Fe-Cu bimetallic organic framework (Fe-Cu-MOF@C) was prepared by microwave synthesis and pyrolysis. Using potassium persulfate (PS) as oxidant and 2,4-dichlorophenol (2,4-DCP) as target pollutant, the optimal preparation conditions of Fe-Cu-MOF@C were studied. The factors affecting the synthesis of Fe-Cu-MOF include microwave power, microwave time, microwave temperature, the molar ratio of metal ions to organic ligands, the molar ratio of iron and copper, etc. In addition, the influence of pyrolysis temperature on the performance of Fe-Cu-MOF@C cannot be ignored. The results show that Fe-Cu-MOF@C has the best catalytic performance when the microwave time is 30 min, the microwave power is 600 W, the microwave temperature is 150 °C, the molar ratio of (Fe2+ + Cu2+)/H2BDC is 10:3, the molar ratio of Fe2+/Cu2+ is 10:1, and the pyrolysis temperature is 700 °C. After 90 min of reaction, 2,4-DCP was completely removed. Repeatable experiments show that Fe-Cu-MOF@C has good stability and its service life can be restored by heat treatment. In this study, a heterogeneous catalyst with strong catalytic capacity, high stability and easy recovery was prepared by a simple and efficient process, which is conducive to the development of advanced oxidation technology and the progress of water environmental protection.
Collapse
Affiliation(s)
- Shengxuan Guo
- Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Dajun Ren
- Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Yongwei Huang
- Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Zhaobo Wang
- Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Shuqin Zhang
- Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Xiaoqing Zhang
- Wuhan University of Science and Technology, Wuhan, China E-mail:
| | - Xiangyi Gong
- Wuhan University of Science and Technology, Wuhan, China E-mail:
| |
Collapse
|
13
|
Luo H, Ma B, Chen F, Zhang S, Wang X, Xiong Y, Cheng Y, Gong R. Construction of hollow core-shelled nitrogen-doped carbon-coated yttrium aluminum garnet composites toward efficient microwave absorption. J Colloid Interface Sci 2022; 622:181-191. [DOI: 10.1016/j.jcis.2022.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/23/2022]
|
14
|
Simultaneous Achievement of High-Yield Hydrogen and High-Performance Microwave Absorption Materials from Microwave Catalytic Deconstruction of Plastic Waste. Processes (Basel) 2022. [DOI: 10.3390/pr10040782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Here, FeAlOx catalytic deconstruction of polyethylene in a domestic microwave oven is reported. With the starting weight ratio of FeAlOx to polyethylene at 1:1, the concentration and yield of H2 reach up to 67.85 vol% and 48.1 mmol g−1plastic, respectively. CNTs@Fe3O4/Fe3C/Fe composite, which exhibits excellent microwave absorption properties, is generated simultaneously. The minimum reflection loss (RLmin) of the solid product reaches −54.78 dB at 15 GHz with an effective absorption bandwidth of 4.5 GHz at the thickness of 1.57 mm.
Collapse
|
15
|
Wang L, Peng H, Xie WQ, Shi SL, Yuan MW, Zhao D, Wang SH, Chen C. Microwave pyrolysis-engineered MOFs derivatives for efficient preferential CO oxidation in H2-rich stream. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Chelating Cu-N within Cu+-incorporated MIL-101 (Cr)-NH2 framework for enhanced CO adsorption and CO/CO2 selectivity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Qu Z, Wang Y, Wang W, Yu D. Three-dimensional network structure Co/CNT derived from bimetal MOFs toward efficient electromagnetic wave absorber. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|