1
|
Yang H, Mawignon FJ, Li C, Luo Y, Yu J, Li G, Zheng Y, Lu S, Wang Z, Sufyan M, Qin L, Zhang Y. Biomimetic Slippery Surface with Exclusive Liquid-Repellent and Self-Cleaning Properties for Antifouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12443-12453. [PMID: 38833582 DOI: 10.1021/acs.langmuir.4c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The nature always offers amazing inspiration, where it is highly desirable to endow coatings on marine equipment with powerful functions. An excellent example is slippery zone of Nepenthes pitcher, which possesses novel liquid-repellent and self-cleaning performance. Therefore, this study presents an efficient fabrication method to prepare a novel coating. The coatings were fabricated by designing biomimetic textures extracted from the lunate bodies of slippery zone on polydimethylsiloxane (PDMS) and then grafting Dictyophora indusiata polysaccharide (DIP) modifier. The as-prepared slippery coatings exhibited outstanding antifouling properties against kinds of daily life pollutants such as Chlorella and coffee. This synergistic strategy was proposed combined with environmentally friendly modifier grafting and heterogeneous microstructure on the surface to broaden new probabilities for manufacturing slippery coatings with incredible protective functionality.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Fagla Jules Mawignon
- School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R.China
| | - Censhu Li
- Key Laboratory of Biomedical Information of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Yusen Luo
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Jiazi Yu
- Key Laboratory of Biomedical Information of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Guoming Li
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Yezi Zheng
- Key Laboratory of Biomedical Information of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Shan Lu
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Zheng Wang
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Muhammad Sufyan
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Liguo Qin
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components. School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| | - Yali Zhang
- Key Laboratory of Biomedical Information of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R.China
| |
Collapse
|
2
|
Rasitha TP, Krishna NG, Anandkumar B, Vanithakumari SC, Philip J. A comprehensive review on anticorrosive/antifouling superhydrophobic coatings: Fabrication, assessment, applications, challenges and future perspectives. Adv Colloid Interface Sci 2024; 324:103090. [PMID: 38290251 DOI: 10.1016/j.cis.2024.103090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Superhydrophobicity (SHP) is an incredible phenomenon of extreme water repellency of surfaces ubiquitous in nature (E.g. lotus leaves, butterfly wings, taro leaves, mosquito eyes, water-strider legs, etc). Historically, surface exhibiting water contact angle (WCA) > 150° and contact angle hysteresis <10° is considered as SHP. The SHP surfaces garnered considerable attention in recent years due to their applications in anti-corrosion, anti-fouling, self-cleaning, oil-water separation, viscous drag reduction, anti-icing, etc. As corrosion and marine biofouling are global problems, there has been focused efforts in combating these issues using innovative environmentally friendly coatings designs taking cues from natural SHP surfaces. Over the last two decades, though significant progress has been made on the fabrication of various SHP surfaces, the practical adaptation of these surfaces for various applications is hampered, mainly because of the high cost, non-scalability, lack of simplicity, non-adaptability for a wide range of substrates, poor mechanical robustness and chemical inertness. Despite the extensive research, the exact mechanism of corrosion/anti-fouling of such coatings also remains elusive. The current focus of research in recent years has been on the development of facile, eco-friendly, cost-effective, mechanically robust chemically inert, and scalable methods to prepare durable SHP coating on a variety of surfaces. Although there are some general reviews on SHP surfaces, there is no comprehensive review focusing on SHP on metallic and alloy surfaces with corrosion-resistant and antifouling properties. This review is aimed at filling this gap. This review provides a pedagogical description with the necessary background, key concepts, genesis, classical models of superhydrophobicity, rational design of SHP, coatings characterization, testing approaches, mechanisms, and novel fabrication approaches currently being explored for anticorrosion and antifouling, both from a fundamental and practical perspective. The review also provides a summary of important experimental studies with key findings, and detailed descriptions of the evaluation of surface morphologies, chemical properties, mechanical, chemical, corrosion, and antifouling properties. The recent developments in the fabrication of SHP -Cr-Mo steel, Ti, and Al are presented, along with the latest understanding of the mechanism of anticorrosion and antifouling properties of the coating also discussed. In addition, different promising applications of SHP surfaces in diverse disciplines are discussed. The last part of the review highlights the challenges and future directions. The review is an ideal material for researchers practicing in the field of coatings and also serves as an excellent reference for freshers who intend to begin research on this topic.
Collapse
Affiliation(s)
- T P Rasitha
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Nanda Gopala Krishna
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - B Anandkumar
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - S C Vanithakumari
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India
| | - John Philip
- Corrosion Science and Technology Division, Materials Characterization Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India; Homi Bhabha National Institute, Kalpakkam 603102, India.
| |
Collapse
|
3
|
Mirzaalipour A, Aghamohammadi E, Vakili H, Khodabakhsh M, Unal U, Makki H. Molecular Insight into the Effect of Polymer Topology on Wettability of Block Copolymers: The Case of Amphiphilic Polyurethanes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:62-71. [PMID: 38100712 PMCID: PMC10786039 DOI: 10.1021/acs.langmuir.3c01646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/09/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
The microstructure design of multiblock copolymers is essential for achieving desired interfacial properties in submerged applications. Two major design factors are the chemical composition and polymer topology. Despite a clear relationship between chemical composition and wetting, the effect of polymer topology (i.e., linear vs cross-linked polymers) is not very clear. Thus, in this study, we shed light on the molecular origins of polymer topology on the wetting behavior. To this end, we synthesized linear and three-dimensional (3D) cross-linked network topologies of poly(ethylene glycol) (PEG)-modified polycarbonate polyurethanes with the same amount of hydrophilic PEG groups on the surface (confirmed by X-ray photoelectron spectroscopy (XPS)) and studied the wetting mechanisms through water contact angle (WCA), atomic force microscopy (AFM), and molecular dynamics (MD) simulations. The linear topology exhibited superhydrophilic behavior, while the WCA of the cross-linked polymer was around 50°. AFM analysis (performed on dry and wet samples) suggests that PEG migration toward the interface is the dominant factor. MD simulations confirm the AFM results and unravel the mechanisms: the higher flexibility of PEG in linear topology results in a greater PEG migration to the interface and formation of a thicker interfacial layer (i.e., twice as thick as the cross-linked polymers). Accordingly, water diffusion into the interfacial layer was greater in the case of the linear polymer, leading to better screening of the underneath hydrophobic (polycarbonate) segments.
Collapse
Affiliation(s)
- Alireza Mirzaalipour
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Ave., 159163-4311 Tehran, Iran
| | - Elnaz Aghamohammadi
- Department
of Polymer and Color Engineering, Amirkabir
University of Technology, 424 Hafez Ave., 159163-4311 Tehran, Iran
| | - Helma Vakili
- Polymer
Engineering group, School of Chemical Engineering, College of Engineering, University of Tehran, 1417935840 Tehran, Iran
| | | | - Ugur Unal
- Chemistry
Department, Koc University, Rumelifeneri Yolu, Sariyer 34450 Istanbul, Turkey
- Koc
University Surface Science and Technology Center (KUYTAM), Koc University, Rumelifeneri Yolu, Sariyer 34450 Istanbul, Turkey
| | - Hesam Makki
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, U.K.
| |
Collapse
|
4
|
Chelazzi D, Baglioni P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10744-10755. [PMID: 37487238 PMCID: PMC10413966 DOI: 10.1021/acs.langmuir.3c01324] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Indexed: 07/26/2023]
Abstract
Cultural heritage is a crucial resource to increase our society's resilience. However, degradation processes, enhanced by environmental and anthropic risks, inevitably affect works of art, hindering their accessibility and socioeconomic value. In response, interfacial and colloidal chemistry has proposed valuable solutions over the past decades, overcoming the limitations of traditional restoration materials and granting cost- and time-effective remedial conservation of the endangered artifacts. Ranging from inorganic nanoparticles to hybrid composites and soft condensed matter (gels, microemulsions), a wide palette of colloidal systems has been made available to conservators worldwide, targeting the consolidation, cleaning, and protection of works of art. The effectiveness and versatility of the proposed solutions allow the safe and effective treatment of masterpieces belonging to different cultural and artistic productions, spanning from classic ages to the Renaissance and modern/contemporary art. Despite these advancements, the formulation of materials for the preservation of cultural heritage is still an open, exciting field, where recent requirements include coping with the imperatives of the Green Deal to foster the production of sustainable, low-toxicity, and environmentally friendly systems. This review gives a critical overview starting from pioneering works up to the latest advancements in colloidal systems for art conservation, a challenging topic where effective solutions can be transversal to multiple sectors even beyond cultural heritage preservation, from the pharmaceutical and food industry, to cosmetics, tissue engineering, and detergency.
Collapse
Affiliation(s)
- David Chelazzi
- Department
of Chemistry “Ugo Schiff” and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Piero Baglioni
- CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Apsey H, Hill D, Barron AR, Alexander S. Slippery Alkoxysilane Coatings for Antifouling Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17353-17363. [PMID: 36951685 PMCID: PMC10080537 DOI: 10.1021/acsami.3c00555] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report the wettability and antifouling behavior of a range of different siloxane coatings on plastic and glass substrates. The films investigated are prepared using trimethoxysilane precursors with different alkyl chain lengths (1-18 C atoms) in order to study how the nature of the hydrophobic group affects the different parameters used to characterize wettability (contact angles, sliding angles, and contact angle hysteresis). Atomic force microscopy analysis shows that the coatings possess low surface topography [root mean squared roughness (rms) < 50 nm] and are highly transparent as studied using UV-vis spectroscopy. The sliding properties of H2O, CH2I2, methanol, and ethylene glycol were observed to be strongly influenced by the chain length of the alkoxysilane precursor used. The coatings formed from the longer chain analogues show comparable water sliding angles to superhydrophobic surfaces. These coatings show similar performance to analogous alkoxysilane coating-bearing fluorinated groups, indicating that they could act as viable environmentally friendly alternatives to some of the fluorinated films that have been widely adopted. Furthermore, these surfaces are highly durable toward common forms of abrasion and are observed to show low adhesion toward synthetic feces, indicating that their utility extends further than repelling liquids alone. Consequently, these coatings could show promise for potential use in applications in the medical sector where fouling by biological mixtures leads to an unsustainable use of materials.
Collapse
Affiliation(s)
- Henry Apsey
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| | - Donald Hill
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| | - Andrew R. Barron
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
- Arizona
Institute for Resilient Environments and Societies (AIRES), University of Arizona, Tucson, Arizona 85721, United States
- Department
of Chemistry and Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Faculty
of Engineering, Universiti Teknologi Brunei, Darussalam BE1410, Brunei
| | - Shirin Alexander
- Energy
Safety Research Institute (ESRI), School of Engineering and Applied
Sciences, Swansea University Bay Campus, Fabian Way, Swansea SA1 8EN, U.K.
| |
Collapse
|
6
|
Varol HS, Seeger S. Droplet Size-Assisted Polysiloxane Architecting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:377-388. [PMID: 36527409 DOI: 10.1021/acs.langmuir.2c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
(Super)antiwetting shielding around engineering materials and protecting them against harsh environmental conditions have been achieved via growing various geometry polysiloxane (or silicone) patterns around them by using a droplet-assisted growth method, where the polymerization takes place inside of the water droplets acting as reaction vessels. The size and distribution of these reaction vessels are the main factors in making different geometry silicone patterns; however, very little is known about the fate of these droplets throughout the polymerization. Here, we propose keeping the relative humidity (% RH) inside the reactor stable throughout the polymerization as a new coating parameter to force the size of the reaction vessel water droplets to be the same for building simply shaped silicone rods with controlled geometry and distribution. In this manner, we grew simple geometry cylindric microrods on surfaces and could tune their length, diameter, inter-rod spacing, and thus the (super)hydrophobicity. Here, we also demonstrate that with changes in the amplitude and stability of the % RH, it is possible to fabricate different (super)hydrophobic nanograsses, conical silicone microrods, and isotropic silicone nanofilaments. The proposed new way of tuning initial and in situ reaction vessel droplet size can be used as a single factor to formulate different geometry silicone patterns with tunable dimensions, leading to different roughness and hydrophobicity. To a certain extent, the droplet size-assisted silicone shaping in this work provides a new way to control the length, diameter, morphology, inter-rod spacing, and thus the (super)hydrophobicity of the silicone patterns, especially those in the shape of simple cylindrical microrods. This control over silicone architecting will help to prepare new (super)hydrophobic coatings with more controlled morphology and thus wettability; on the contrary, it will support surface scientists modeling the connection between surface geometry and (super)antiwetting of such irregular pillared surfaces that remain elusive.
Collapse
Affiliation(s)
- H Samet Varol
- Department of Chemistry, Universität Zürich, ZürichCH 8057, Switzerland
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, DarmstadtD-64287, Germany
| | - Stefan Seeger
- Department of Chemistry, Universität Zürich, ZürichCH 8057, Switzerland
| |
Collapse
|
7
|
Luo H, Wei H, Wang L, Gao Q, Chen Y, Xiang J, Fan H. Anti-smudge and self-cleaning characteristics of waterborne polyurethane coating and its construction. J Colloid Interface Sci 2022; 628:1070-1081. [DOI: 10.1016/j.jcis.2022.08.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022]
|
8
|
Highly Water-Repellent and Anti-Reflective Glass Based on a Hierarchical Nanoporous Layer. COATINGS 2022. [DOI: 10.3390/coatings12070961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Optically anti-reflective and water-repellent glass is required for solar cell covers to improve power-generation efficiency due to transparency improvement and dirt removal. Research has been conducted in recent years on technologies that do not use fluorine materials. In this study, we focused on the anti-reflective properties and microstructure of hierarchical nanoporous layer (HNL) glass and used it as a substrate. As a result, we have achieved both strong anti-reflectivity and high water repellency on HNL glass by coating polydimethylsiloxane (PDMS) using baking and thermal chemical vapor deposition (CVD). The surfaces showed a significantly higher sliding velocity of water droplets than the PDMS-treated material on the flat glass plate. They also showed such water repellency that the droplets bounced off the surface.
Collapse
|
9
|
Self-potent anti-microbial and anti-fouling action of silver nanoparticles derived from lichen-associated bacteria. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Kumar A, Al-Jumaili A, Bazaka O, Ivanova EP, Levchenko I, Bazaka K, Jacob MV. Functional nanomaterials, synergisms, and biomimicry for environmentally benign marine antifouling technology. MATERIALS HORIZONS 2021; 8:3201-3238. [PMID: 34726218 DOI: 10.1039/d1mh01103k] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Marine biofouling remains one of the key challenges for maritime industries, both for seafaring and stationary structures. Currently used biocide-based approaches suffer from significant drawbacks, coming at a significant cost to the environment into which the biocides are released, whereas novel environmentally friendly approaches are often difficult to translate from lab bench to commercial scale. In this article, current biocide-based strategies and their adverse environmental effects are briefly outlined, showing significant gaps that could be addressed through advanced materials engineering. Current research towards the use of natural antifouling products and strategies based on physio-chemical properties is then reviewed, focusing on the recent progress and promising novel developments in the field of environmentally benign marine antifouling technologies based on advanced nanocomposites, synergistic effects and biomimetic approaches are discussed and their benefits and potential drawbacks are compared to existing techniques.
Collapse
Affiliation(s)
- Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Medical Physics Department, College of Medical Sciences Techniques, The University of Mashreq, Baghdad, Iraq
| | - Olha Bazaka
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Elena P Ivanova
- School of Science, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Igor Levchenko
- Plasma Sources and Application Centre, NIE, Nanyang Technological University, 637616, Singapore
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
- School of Engineering, The Australian National University, Canberra, ACT 2601, Australia
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
11
|
Xu Q, Qiu R, Bai Z, Ma J, Fan Q, Li Y, Taha S, Ramzan Z, Li J. Zein‐based microcapsule for vanillin sustained release. J Appl Polym Sci 2021. [DOI: 10.1002/app.51217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qunna Xu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| | - Ruijie Qiu
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| | - Zhongxue Bai
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| | - Jianzhong Ma
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| | - Qianqian Fan
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| | - Yun Li
- College of Chemistry and Chemical Engineering Yantai University Yantai China
| | - Siddiqui Taha
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
| | - Zaki Ramzan
- College of Electronic Information and Artificial Intelligence Shaanxi University of Science & Technology Xi'an China
| | - Jiaojiao Li
- College of Bioresources Chemical and Materials Engineering Shaanxi University of Science & Technology Xi'an China
- Key Laboratory of Leather Cleaner Production China National Light Industry Xi'an China
| |
Collapse
|
12
|
Sun X, Zhang L, Chen R, Liu J, Yu J, Zhu J, Liu P, Wang J, Liu Q. Constructing three-dimensional network C, O Co-doped nitrogen-deficient carbon nitride regulated by acrylic fluoroboron overall marine antifouling. J Colloid Interface Sci 2021; 608:1802-1812. [PMID: 34742089 DOI: 10.1016/j.jcis.2021.10.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 10/20/2022]
Abstract
To deal with unwanted biofouling adsorption, which impacts the economy and the environment, significant research has been devoted to composite systems involving a photocatalyst combined with self-renewal resin to provide synergistic antifouling. Here, photocatalyst based on three-dimensional (3D) network of carbon-oxygen-doped nitrogen-deficient carbon nitride and acrylic fluoroboron polymer as a system was successfully synthesized. 3D networks carbon nitride with carbon-oxygen dopants and nitrogen defects were prepared as skeletons, which effectively support and regulate the hydrolysis rate of the polymer. These composite systems exhibits excellent diatom anti-adhesion performance and high antibacterial rates for Escherichia coli and Staphylococcus aureus of up to 91.87% and 88.52%, respectively. In addition, self-cleaning function of the composite system are proved by and higher efficiency of chemical oxygen demand (COD) removal owing to efficient charge-carrier separation and transfer within the 3D network carbon nitride network. The great potential applications of this strategy demonstrated in marine engineering in the future.
Collapse
Affiliation(s)
- Xiaonan Sun
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Linlin Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Rongrong Chen
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd, Hainan 572427, China.
| | - Jingyuan Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jing Yu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jiahui Zhu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Peili Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qi Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; Hainan Harbin Institute of Technology Innovation Research Institute Co., Ltd, Hainan 572427, China.
| |
Collapse
|
13
|
Selim MS, Fatthallah NA, Higazy SA, Hao Z, Jing Mo P. A comparative study between two novel silicone/graphene-based nanostructured surfaces for maritime antifouling. J Colloid Interface Sci 2021; 606:367-383. [PMID: 34392032 DOI: 10.1016/j.jcis.2021.08.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Two novel superhydrophobic nanocomposite series of polydimethylsiloxane (PDMS) enriched with reduced graphene oxide (RGO) and graphene oxide/boehmite nanorods (GO-γ-AlOOH) nanofillers were synthesized as maritime fouling-release (FR) surfaces. Controlling the nanofillers' structures and distribution in the silicone matrix influenced the self-cleaning and antifouling properties. γ-AlOOH nanorods had a single crystallinity with an average diameter of 10-20 nm and < 200 nm length. A hydrothermal method was used to prepare RGO, while the chemical deposition method was used to synthesis GO-γ-AlOOH nanocomposites for use as fouling-release coating materials. For studying the synergetic effects of graphene-based materials on the surface, mechanical, and FR features, these nanofillers were dispersed in the silicone matrix using the solution casting method. The hydrophobicity and antifouling properties of the surface were studied using water contact angle (WCA), scanning electron, and atomic force microscopes (SEM and AFM). Coatings' roughness, superhydrophobicity, and surface mechanical properties all improved for the homogeneity of the dispersion of the nanocomposite. Laboratory assessments were carried out for 30 days using selected microorganisms to determine the antifouling effects of the coating systems. PDMS/GO-γ-AlOOH nanorod composite had better antibacterial activity than PDMS/RGO nanocomposite against different bacterial strains. This is caused by the high surface area and stabilizing effects of the GO-γ-AlOOH hybrid nanofillers. The PDMS/GO-γ-AlOOH nanorod composite (3 wt%) had the lowest biodegradability percentage (1.6%) and the microbial endurability percentages for gram-positive, gram-negative, and fungi were 86.42%, 97.94%, and 85.97%, respectively. A field trial in natural seawater was conducted to confirm the coatings' FR performance based on the screening process and image analysis for 45 days in a tropical area. The most profound superhydrophobic antifouling nanostructured coating was the homogeneity of the GO-γ-AlOOH (3 wt%) dispersion, which had a WCA of 151° and a rough surface.
Collapse
Affiliation(s)
- Mohamed S Selim
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China; Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt.
| | | | - Shimaa A Higazy
- Petroleum Application Department, Egyptian Petroleum Research Institute (EPRI), Nasr City 11727, Cairo, Egypt
| | - Zhifeng Hao
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Ping Jing Mo
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
14
|
Baglioni M, Poggi G, Chelazzi D, Baglioni P. Advanced Materials in Cultural Heritage Conservation. Molecules 2021; 26:molecules26133967. [PMID: 34209620 PMCID: PMC8271397 DOI: 10.3390/molecules26133967] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/25/2021] [Indexed: 11/16/2022] Open
Abstract
Cultural Heritage is a crucial socioeconomic resource; yet, recurring degradation processes endanger its preservation. Serendipitous approaches in restoration practice need to be replaced by systematically addressing conservation issues through the development of advanced materials for the preservation of the artifacts. In the last few decades, materials and colloid science have provided valid solutions to counteract degradation, and we report here the main highlights in the formulation and application of materials and methodologies for the cleaning, protection and consolidation of works of art. Several types of artifacts are addressed, from murals to canvas paintings, metal objects, and paper artworks, comprising both classic and modern/contemporary art. Systems, such as nanoparticles, gels, nanostructured cleaning fluids, composites, and other functional materials, are reviewed. Future perspectives are also commented, outlining open issues and trends in this challenging and exciting field.
Collapse
|