1
|
Li F, Li G, Lougou BG, Zhou Q, Jiang B, Shuai Y. Upcycling biowaste into advanced carbon materials via low-temperature plasma hybrid system: applications, mechanisms, strategies and future prospects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 189:364-388. [PMID: 39236471 DOI: 10.1016/j.wasman.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
This review focuses on the recent advances in the sustainable conversion of biowaste to valuable carbonaceous materials. This study summarizes the significant progress in biowaste-derived carbon materials (BCMs) via a plasma hybrid system. This includes systematic studies like AI-based multi-coupling systems, promising synthesis strategies from an economic point of view, and their potential applications towards energy, environment, and biomedicine. Plasma modified BCM has a new transition lattice phase and exhibits high resilience, while fabrication and formation mechanisms of BCMs are reviewed in plasma hybrid system. A unique 2D structure can be designed and formulated from the biowaste with fascinating physicochemical properties like high surface area, unique defect sites, and excellent conductivity. The structure of BCMs offers various activated sites for element doping and it shows satisfactory adsorption capability, and dynamic performance in the field of electrochemistry. In recent years, many studies have been reported on the biowaste conversion into valuable materials for various applications. Synthesis methods are an indispensable factor that directly affects the structure and properties of BCMs. Therefore, it is imperative to review the facile synthesis methods and the mechanisms behind the formation of BCMs derived from the low-temperature plasma hybrid system, which is the necessity to obtain BCMs having desirable structure and properties by choosing a suitable synthesis process. Advanced carbon-neutral materials could be widely synthesized as catalysts for application in environmental remediation, energy conversion and storage, and biotechnology.
Collapse
Affiliation(s)
- Fanghua Li
- National Engineering Research Center For Safe Disposal and Resources Recovery of Sludge, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Gaotingyue Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Bachirou Guene Lougou
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiaoqiao Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816 Jiangsu, China
| | - Boshu Jiang
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yong Shuai
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
2
|
Sam DK, Li H, Xu YT, Cao Y. Advances in porous carbon materials for a sustainable future: A review. Adv Colloid Interface Sci 2024; 333:103279. [PMID: 39208622 DOI: 10.1016/j.cis.2024.103279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/05/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Developing clean and renewable energy sources is key to a sustainable future. For human society to progress sustainably, environmentally friendly energy conversion and storage technologies are critical. The use of nanostructured advanced functional materials heavily influences the functionality of these systems. Porous carbons are multifunctional materials boasting considerable industrial utility. They possess many remarkable physiochemical and mechanical characteristics which have garnered interest in various fields. In this review, the application of porous carbon materials in electrocatalysis (HER, OER, ORR, NARR, and CO2RR) and rechargeable batteries (LIBs, LiS batteries, NIBs, and KIBs) for renewable energy conversion and storage are discussed. The suitability of porous carbon materials for these applications is discussed, and some recent works are reviewed. Finally, a few viewpoints on developing porous carbons in electrocatalysis and rechargeable batteries are given. This review aims to generate interest in current and upcoming researchers in porous carbon application for a sustainable future.
Collapse
Affiliation(s)
- Daniel Kobina Sam
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Heyu Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Tong Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; School of Advanced Energy, Sun Yat-Sen University, Shenzhen 518107, China.
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China; Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China.
| |
Collapse
|
3
|
Honciuc A, Honciuc M, Solonaru AM. Reversible Cu-Nanoparticle Formation in Soft Hydrogel Composites: Towards Write-Erase Displays and Fluorescence Detection. J Colloid Interface Sci 2024; 668:37-49. [PMID: 38669994 DOI: 10.1016/j.jcis.2024.04.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
In this study, we introduce a hydrogel-polymer microsphere (HPM) composite material constituted of PVA, glycerin, and polymer microspheres obtained from Pickering emulsions that are capable of adsorbing Cu2+ ions. The obtained HPM composite is soft, flexible, can be fully saturated with Cu2+ ions, and exhibits a reversible color transition from blue to black upon electrode contact or interaction with a reducing agent, due to in situ generation of copper nanoparticles (Cu-NPs). Because of the color contrast between the locally generated Cu-NPs and the background, the HPM can be used as substrate for stamping different shapes or writing text. Further, the surface can be erased by an acidic solution, which makes it interesting as flexible write-erase displays. A second feature of the HPM is that it can function as a fluorescence detector of cyanide ions. An HPM whose surface has been stamped with an electrode, upon contacting an aqueous solution containing cyanide ions, begins fluorescing a yellow-green light around the patterned area. The displayed luminescence is irreversible and is preserved even after HPM's drying or lyophilization. This work lays a foundational framework for future exploration of the HPM composites in various technological applications, for sensing, circuit printing, and flexible displays.
Collapse
Affiliation(s)
- Andrei Honciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, Iasi, 700487, Romania.
| | - Mirela Honciuc
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, Iasi, 700487, Romania
| | - Ana-Maria Solonaru
- "Petru Poni" Institute of Macromolecular Chemistry, 41A Gr. Ghica Voda Alley, Iasi, 700487, Romania
| |
Collapse
|
4
|
Sam DK, Cao Y. Iron-Cobalt Nanoparticles Embedded in B,N-Doped Chitosan-Derived Porous Carbon Aerogel for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32311-32321. [PMID: 38870486 DOI: 10.1021/acsami.4c06141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Given their intriguing properties, porous carbons have surfaced as promising electrocatalysts for various energy conversion reactions. This study presents a unique approach where iron-cobalt (FeCo) is confined in a boron, nitrogen-doped chitosan-derived porous carbon aerogel (BNPC-FeCo) to serve as an electrocatalyst for the hydrogen evolution and oxygen evolution reactions (HER and OER). The BNPC-FeCo-900 electrocatalyst demonstrates excellent catalyst activity, with very low overpotentials of 186 and 320 mV at 10 mA cm-2, low Tafel slopes of 82 and 55 mV dec-1, and low charge transfer resistance of 2.68 and 9.25 Ω for HER and OER, respectively. Density functional theory (DFT) calculations further reveal that the cooperation between the boron, nitrogen codoped porous carbon, and the FeCo nanoparticles reduces intermediates' energy barriers, significantly enhancing the HER and OER performance. In conclusion, this work offers significant and informative perspectives into the potential of porous carbon materials as dual-purpose electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Daniel Kobina Sam
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yan Cao
- School of Energy Science and Engineering, University of Science and Technology of China, Guangzhou 510640, China
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
5
|
Xie L, Jiang Y, Zhu W, Ding S, Zhou Y, Zhu JJ. Cu-based catalyst designs in CO 2 electroreduction: precise modulation of reaction intermediates for high-value chemical generation. Chem Sci 2023; 14:13629-13660. [PMID: 38075661 PMCID: PMC10699555 DOI: 10.1039/d3sc04353c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/13/2023] [Indexed: 04/26/2024] Open
Abstract
The massive emission of excess greenhouse gases (mainly CO2) have an irreversible impact on the Earth's ecology. Electrocatalytic CO2 reduction (ECR), a technique that utilizes renewable energy sources to create highly reduced chemicals (e.g. C2H4, C2H5OH), has attracted significant attention in the science community. Cu-based catalysts have emerged as promising candidates for ECR, particularly in producing multi-carbon products that hold substantial value in modern industries. The formation of multi-carbon products involves a range of transient intermediates, the behaviour of which critically influences the reaction pathway and product distribution. Consequently, achieving desirable products necessitates precise regulation of these intermediates. This review explores state-of-the-art designs of Cu-based catalysts, classified into three categories based on the different prospects of the intermediates' modulation: heteroatom doping, morphological structure engineering, and local catalytic environment engineering. These catalyst designs enable efficient multi-carbon generation in ECR by effectively modulating reaction intermediates.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, The Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University Nanjing 210023 China
| | - Shichao Ding
- Department of Nanoengineering, University of California La Jolla San Diego CA 92093 USA
| | - Yang Zhou
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials IAM, Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
6
|
Zhang L, Li X, Chen L, Zhai C, Tao H. Honeycomb-like CuO@C for electroreduction of carbon dioxide to ethylene. J Colloid Interface Sci 2023; 640:783-790. [PMID: 36898182 DOI: 10.1016/j.jcis.2023.02.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
The electrochemical CO2 reduction (ECR) of high-value multicarbon products is an urgent challenge for catalysis and energy resources. Herein, we reported a simple polymer thermal treatment strategy for preparing honeycomb-like CuO@C catalysts for ECR with remarkable C2H4 activity and selectivity. The honeycomb-like structure favored the enrichment of more CO2 molecules to improve the CO2-to-C2H4 conversion. Further experimental results indicate that the CuO loaded on amorphous carbon with a calcination temperature of 600 °C (CuO@C-600) has a Faradaic efficiency (FE) as high as 60.2% towards C2H4 formation, significantly outperforming pure CuO-600 (18.3%), CuO@C-500 (45.1%) and CuO@C-700 (41.4%), respectively. The interaction between the CuO nanoparticles and amorphous carbon improves the electron transfer and accelerates the ECR process. Furthermore, in situ Raman spectra demonstrated that CuO@C-600 can adsorb more adsorbed *CO intermediates, which enriches the CC coupling kinetics and promotes C2H4 production. This finding may offer a paradigm to design high-efficiency electrocatalysts, which can be beneficial to achieve the "double carbon goal."
Collapse
Affiliation(s)
- Lina Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xin Li
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Lihui Chen
- School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Hengcong Tao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China; School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan 316022, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Chen J, Liu J, Yang W, Pei Y. Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers (Basel) 2023; 15:375. [PMID: 36679256 PMCID: PMC9863204 DOI: 10.3390/polym15020375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
A catalyst determines the mechanism of an organic chemical reaction, thus enabling the commercially viable formation of desired material products. Biopolymers offer new opportunities for the construction of catalysts by virtue of their biocompatibility, environmental benignity, and sustainability, as well as their low cost. Biopolymers are especially useful as carriers and precursors in catalysis application. The employment of biocompatible and biosustainable collagen and silk fibroin materials will revolutionize state-of-the-art electronic devices and systems that currently rely on conventional technologies. In this review, we first consider the ordered hierarchical structure, origin, and processing methods of collagen and silk fibroin. Then, the unique advantages and applicability of collagen and silk fibroin for constructing catalysts are summarized. Moreover, a summary of the state-of-the-art design, fabrication, and application of collagen- and silk fibroin-based catalysts, as well as the application of collagen- and silk-based catalysts, is presented by focusing on their roles as carriers and precursors, respectively. Finally, challenges and prospects are assessed for the construction and development of collagen and silk fibroin-based catalysts.
Collapse
Affiliation(s)
- Jiankang Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Zhang M, Xuan X, Yi X, Sun J, Wang M, Nie Y, Zhang J, Sun X. Carbon Aerogels as Electrocatalysts for Sustainable Energy Applications: Recent Developments and Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2721. [PMID: 35957152 PMCID: PMC9370447 DOI: 10.3390/nano12152721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Carbon aerogel (CA) based materials have multiple advantages, including high porosity, tunable molecular structures, and environmental compatibility. Increasing interest, which has focused on CAs as electrocatalysts for sustainable applications including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and CO2 reduction reaction (CO2RR) has recently been raised. However, a systematic review covering the most recent progress to boost CA-based electrocatalysts for ORR/OER/HER/CO2RR is now absent. To eliminate the gap, this critical review provides a timely and comprehensive summarization of the applications, synthesis methods, and principles. Furthermore, prospects for emerging synthesis, screening, and construction methods are outlined.
Collapse
Affiliation(s)
- Minna Zhang
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xiaoxu Xuan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Xibin Yi
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jinqiang Sun
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mengjie Wang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Yihao Nie
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jing Zhang
- Shandong Key Laboratory for Special Silicon-Containing Material, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xun Sun
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
| |
Collapse
|
9
|
Wang W, Lu R, Xiao X, Gong S, Sam DK, Liu B, Lv X. CuAg nanoparticle/carbon aerogel for electrochemical CO 2 reduction. NEW J CHEM 2021. [DOI: 10.1039/d1nj03540a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A small sized CuAg heterostructure anchored by a silk fibroin-derived carbon aerogel exhibits electrocatalytic CO2-to-CO conversion.
Collapse
Affiliation(s)
- Wenbo Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runqing Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xinxin Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shanhe Gong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Daniel Kobina Sam
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xiaomeng Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|