1
|
Jia J, Zhao H, He M, Wang Z, Sun Z, Yang X, Yu Q, Qu Z, Pi X, Yao F. Investigation of the Mechanisms of CO 2/O 2 Adsorption Selectivity on Carbon Materials Enhanced by Oxygen Functional Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14699-14710. [PMID: 37801725 DOI: 10.1021/acs.langmuir.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Power plant flue gas and industrial waste gas are produced in large quantities. Using these as feedstocks for CO2 electroreduction has important practical significance for the treatment of excessive CO2 emissions. However, O2 in such sources strongly inhibits the electrochemical conversion of CO2. The inhibitory effect of O2 can be mitigated by constructing CO2-enriched regions on the surface of the cathode. In this study, the reaction zone was controlled by the selective adsorption of CO2 on oxygen-functionalized carbon materials. The results of quantum chemical simulations showed that CO2 adsorption was mainly influenced by electrostatic interactions, whereas O2 adsorption was completely regulated by dispersion interactions. This distinction indicated that introducing polar oxygen functional groups at the edge of the carbon plane can significantly enhance the selectivity for CO2/O2 adsorption. The difference in the adsorption energy between CO2 and O2 increased most noticeably after the carboxyl groups were introduced. The results of the adsorption experiments showed that oxygen-functionalization increased the CO2/O2 selectivity of the carbon material under an atmosphere of multicomponent gases by more than 4.9 times. The carboxyl groups played a dominant role. Our findings might act as a reference for the selective adsorption of polar molecules over nonpolar molecules.
Collapse
Affiliation(s)
- Jiuyang Jia
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Mingqi He
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Zekun Sun
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Xue Yang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318, China
| | - Qi Yu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xinxin Pi
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Feng Yao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
2
|
Zhang Z, Liu W, Zhang W, Liu M, Huo S. Interface interaction in CuBi catalysts with tunable product selectivity for electrochemical CO2 reduction reaction. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Wang F, Zhang H, Zhang Z, Ma Q, Kong C, Min S. Carbonized wood membrane decorated with AuPd alloy nanoparticles as an efficient self-supported electrode for electrocatalytic CO 2 reduction. J Colloid Interface Sci 2021; 607:312-322. [PMID: 34507001 DOI: 10.1016/j.jcis.2021.08.156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Efficient electrocatalytic reduction of CO2 to value-added chemicals and fuels is a promising technology for mitigating energy shortage and pollution issues yet highly relay on the development of high-performance electrocatalysts. Herein, we develop an effective strategy to fabricate carbonized wood membrane (CW) decorated with AuPd alloy nanoparticles with tunable composition (termed as AuPd@CW) as self-supported electrodes for efficient electrocatalytic CO2 reduction. The uniformly distributed AuPd nanoparticles on wood matrix are first achieved through the in-situ reduction of metal cations by the lignin content in wood. Subsequently, two-step carbonization was employed to promote the alloying of AuPd nanoparticles and the formation of CW. The AuPd@CW membrane electrode features an integrated macroscopic structure with numerous open and aligned channels for rapid electron transfer and mass diffusion and well-dispersed AuPd alloy nanoparticles as active sites for the CO2 reduction. The optimal Au95Pd5@CW electrode affords a high selectivity for CO2 electroreduction with a maximum CO faradaic efficiency (FECO) of 82% at an overpotential of 0.49 V, much higher than those obtained on Au@CW and Pd@CW electrodes. The CO current density and FECO remain relatively stable during a 12 h electrolysis reaction. In addition, density functional theory (DFT) calculations reveal that alloying Au with Pd enables a balance between the formation of intermediate COOH* and the desorption of CO on the surface of AuPd nanoparticles, thus enhancing the selectivity of CO production. This work offers an effective strategy for the fabrication of bimetallic alloys supported on wood-based carbon membrane as a practical electrode for electrochemical energy conversion.
Collapse
Affiliation(s)
- Fang Wang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Haidong Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhengguo Zhang
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Qingxiang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, PR China
| | - Chao Kong
- College of Chemistry and Chemical Engineering, Longdong University, Qingyang, Gansu 745000, PR China
| | - Shixiong Min
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan 750021, PR China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|