1
|
Jia Y, Yan B. Visual ratiometric fluorescence sensing of L-lactate in sweat by Eu-MOF and the design of logic devices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 297:122764. [PMID: 37119612 DOI: 10.1016/j.saa.2023.122764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/14/2023]
Abstract
Using 1, 4-H2NDC as ligand and Eu as the center metal, the lanthanide MOF Eu-NDC was synthesized by hydrothermal method. The material showed a fast ratiometric response to L-lactate, and the fluorescence of the material varied from red to blue with the growth of lactate concentration, which can be used as a fluorescent sensor for L-lactate in sweat. The sensor exhibited good fluorescence stability to interfering components in human sweat and good detection limits for lactate in artificial sweat. Based on this, a visualized molecular logic gate that can monitor sweat lactate levels was constructed, and the material's characteristic of showing different colors with lactate concentration changes was used to indicate possible hypoxia during exercise, opening a new path for combining sweat lactate monitoring with smart molecular devices.
Collapse
Affiliation(s)
- Yinghua Jia
- School of Chem. Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chem. Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China; School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
2
|
Sha H, Yan B. Eu 3+ functionalized metal-organic framework for selective monitoring of emerging environmental pollutants non-steroidal anti-inflammatory drugs. Anal Chim Acta 2023; 1272:341525. [PMID: 37355323 DOI: 10.1016/j.aca.2023.341525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/27/2023] [Accepted: 06/11/2023] [Indexed: 06/26/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs), as a new water pollutant emerging in recent years, has potential hazards to the environment. The difficult degradation characteristics of NSAIDs lead to long-term accumulation in the natural environment, which will inevitably cause incalculable damage to human health. In this work, for practical application considerations, MIL-53(Al) type MOF [Al(OH)(TDC)]‧1.5H2O‧0.7DMF (MIL-53-TDC, TDC = 2,5-thiophene dicarboxylic acid) with good water stability is selected as the sensing main body. The ligand TDC was chosen for two reasons: one is as an antenna ligand, which can sensitize Eu3+ ions to emit characteristic fluorescence; the other is as binding site that the sulfur atoms on the thiophene ring can introduce Eu3+ ions through coordination. Thus, Eu3+ functionalized MIL-53-TDC hybrid materials (Eu@MIL-53-TDC) were developed as a fluorescence sensor for the detection of two kinds of NSAIDs, S-ibuprofen (S-IBP) and diclofenac (DCF). The concentration range of S-IBP and DCF detected by the prepared sensors is 0.001-0.07 mM (LOD = 0.5 μM) and 0.0005-0.1 mM (LOD = 0.2 μM), respectively. Moreover, this sensor not only can achieve rapid (3 min) and sensitive analysis of these two NSAIDs but also has a satisfactory recovery for the detection of S-IBP and DCF in serum and tap water.
Collapse
Affiliation(s)
- Haifeng Sha
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai, 200092, China.
| |
Collapse
|
3
|
Wang L, Cheng J, Liu N, Zou H, Yan H, Lu J, Liu H, Li Y, Dou J, Wang S. Two Co-Based Metal-Organic Framework Isomers with Similar Metal-Carboxylate Sheets: Turn-On Ratiometric Luminescence Sensing Activities toward Biomarker N-Acetylneuraminic Acid and Discrimination of Ga 3+ and In 3. Inorg Chem 2023; 62:2083-2094. [PMID: 36700880 DOI: 10.1021/acs.inorgchem.2c03719] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two supramolecular Co-MOF isomers, namely, {[Co(L)0.5(m-bimb)]·3H2O}n (LCU-115) and {[Co(L)0.5(p-bimb)]·3H2O}n (LCU-116), were synthesized from an amide-containing carboxylic acid N,N″-(3,5-dicarboxylphenyl)benzene-1,4-dicarboxamide (H4L) and two flexible positional isostructural N-containing ligands m-bimb and p-bimb (m-bimb = 1,3-bis((1H-imidazol-1-yl)methyl)benzene; p-bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene). The carboxylate ligands connect Co(II) centers to form 2D metal-carboxylate sheets, which are extended further by m-bimb and p-bimb to form a 2D bilayer with parallel stacking (LCU-115) and a 3D framework (LCU-116), respectively. Luminescence measurements indicated that these two complexes exhibited interesting multiresponsive sensing activities toward pH, biomarker N-acetylneuraminic acid, and trivalent cations Ga3+/In3+. They show highly sensitive turn-on fluorescence responses in the acidic range and can also be regarded as on-off-on vapoluminescent sensors to typical acidic and basic gases HCl and Et3N. It is worth noting that these complexes have excellent turn-on ratiometric fluorescence sensing ability for N-acetylneuraminic acid (NANA) with detection limits as low as 7.39 and 8.06 μM, respectively. Furthermore, they were successfully applied for the detection of NANA in simulated urine and serum samples with satisfactory results. For ion detection, LCU-116 could detect both Ga3+ and In3+, while LCU-115 could distinguish Ga3+ from In3+ with the latter showing luminescence quenching. The sensing mechanism was investigated in detail by XRD, UV-vis, EDS, XPS, SEM, and TEM. The results of interday and intraday precision studies gave low RSD values in the range of 1.19-3.53%, ascertaining the reproducibility of these sensors. The recoveries for the sensing analytes in simulated urine/serum or real water are satisfactory from 96.7 to 103.3% (toward NANA) and 96.6 to 115.0% (toward Ga3+ and In3+), indicating that these two complexes also possess acceptable reliability for monitoring in real samples. The results indicated that the supramolecular isomers LCU-115 and LCU-116 are promising material candidates for application in biological and environmental monitoring.
Collapse
Affiliation(s)
- Luyao Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jiawei Cheng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Nana Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Huiqi Zou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Hui Yan
- School of Pharmacy, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China
| |
Collapse
|
4
|
Jia C, He T, Wang GM. Zirconium-based metal-organic frameworks for fluorescent sensing. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Wang YN, Wang SD, Wang SY, Dou WQ, Dong PH, Lu SQ, Wang F, Sun Y, Yang QF. Water-stable nickel-based coordination polymer for selective and sensitive enhancing and quenching fluorescence sensing of ascorbic acid and acetylacetone. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Synthesis, crystal structure of four 1D to 3D coordination polymers and potential sensor for the detection of ions, antibiotics and pesticides in water media. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
7
|
Afrin S, Khan MW, Haque E, Ren B, Ou JZ. Recent advances in the tuning of the organic framework materials - The selections of ligands, reaction conditions, and post-synthesis approaches. J Colloid Interface Sci 2022; 623:378-404. [PMID: 35594596 DOI: 10.1016/j.jcis.2022.05.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/19/2022] [Accepted: 05/04/2022] [Indexed: 12/16/2022]
Abstract
Organic framework materials, particularly metal-organic frameworks (MOFs), graphene-organic frameworks (GOFs), and covalent organic frameworks (COFs), have led to the revolution across fields including catalysts, sensors, gas capture, and biology mainly owing to their ultra-high surface area-to-volume ratio, on-demand tunable crystal structures, and unique surface properties. While the wet chemistry routes have been the predominant synthesis approach, the crystal phase, morphological parameters, and physicochemical properties of organic framework materials are largely affected by various synthesis parameters and precursors. In this work, we specifically review the influences of synthesis parameters towards crystal structures and chemical compositions of organic framework materials, including selected ligand types and lengths, reaction temperature/solvent/reactant compositions, as well as post-synthesis modification approaches. More importantly, the subsequent impacts on the general electronic, mechanical, surface chemical, and thermal properties as well as the consequent variation in performances towards catalytic, desalination, gas sensing, and gas storage applications are critically discussed. Finally, the current challenges and prospects of organic framework materials are provided.
Collapse
Affiliation(s)
- Sanjida Afrin
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | | | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Baiyu Ren
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Jian Zhen Ou
- School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia; Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
8
|
Ma W, Yan B. Monosystem Discriminative Sensor toward Inorganic Anions via Incorporating Three Different Luminescent Channels in Metal-Organic Frameworks. Anal Chem 2022; 94:5866-5874. [PMID: 35384662 DOI: 10.1021/acs.analchem.2c00019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Because there are great demands of distinguishing multiple chemically similar analytes, chemical sensors for multivariate analyses have been developed rapidly in the past few decades. However, designing luminescent discriminative sensors based on a monosystem has been a challenge until now. In this work, we first develop a triemitting luminescent discriminative platform named RGB@TLU-2 with three different emission centers: blue-emitting center (BDC-NH2), green-emitting (Tb@BDC-SO3-), and red-emitting center (rhodamine B, RhB). The different luminescent mechanisms (ligand emission, LMET emission, guest emission) in these emission centers endow RGB@TLU-2 with high cross-reactivity, which is essential for discriminating applications. To balance the three luminescent centers, all variables in the synthesis process are optimized carefully. Surprisingly, the RGB@TLU-2 shows a variety of luminescent response patterns when immersed into 12 inorganic anions. Two unsupervised multidimensional analysis methods, (principal component analysis and hierarchical cluster analysis), are used to explore the relationship between these anions. On the basis of the luminescent response of analytes, 5 response modes are obtained and 12 inorganic anions are classified into 6 groups. The sensing mechanisms are discussed in detail. Detection limits of typical anions Cr2O72-, PO43-, ClO-, and NO2- are calculated as 2.895 × 10-8, 6.353 × 10-6, 1.134 × 10-5, and 4.56 × 10-4 mol/L, respectively. Furthermore, the RGB@TLU-2 also shows the ability to distinguish 4 (Fe3+, Fe2+, Cu2+ and Cr3+) of 12 metal ions and 3 (Trp, Pro, and Arg) of 11 amino acids.
Collapse
Affiliation(s)
- Wanpeng Ma
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
9
|
Zhou L, Yang L, Wang C, Jia H, Xue J, Wei Q, Ju H. Copper doped terbium metal organic framework as emitter for sensitive electrochemiluminescence detection of CYFRA 21-1. Talanta 2022; 238:123047. [PMID: 34801904 DOI: 10.1016/j.talanta.2021.123047] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022]
Abstract
Lanthanide metal organic frameworks (L-MOFs) are emerging as promising electrochemiluminescence (ECL) emitters for bioanalysis. This work proposed a copper doped terbium MOF as a luminescent tag for construction of a "signal-on" ECL immunosensing method. The Tb-Cu-PA MOF was prepared using Tb3+ and Cu2+ ions as metal linkers and m-phthalic acid as bridge ligand, and exhibited strong ECL emission with K2S2O8 as a coreactant. The immunosensor was prepared by immobilizing capture antibody on Pd nanoparticles modified Ni-Co layered double hydroxide (Pd-ZIF-67@LDH) nanoboxes, which showed strong electrocatalytic activity toward the reduction of S2O82- for amplifying the ECL signal. Upon the sandwich-typed immunoreactions, Tb-Cu-PA MOF labeled antibody was introduced onto the immunosensor for sensitive ECL detection of target protein. Using cytokeratin 19 fragment 21-1 (CYFRA21-1), a representative lung cancer biomarker, as target model, the ECL immunosensing method showed a linear range of 0.01-100 ng/mL and a detection limit of 2.6 pg/mL (S/N = 3). This immunosensing strategy highlighted the advances of using luminescent and electroactive MOFs in the developments of highly efficient immunosensors for bioanalysis.
Collapse
Affiliation(s)
- Limin Zhou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Lei Yang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chao Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hongying Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jingwei Xue
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; State Key Laboratory of Analytical Chemistry for Life Science, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Xu X, Yan B. The postsynthetic renaissance of luminescent lanthanide ions on crystalline porous organic framework materials. CrystEngComm 2022. [DOI: 10.1039/d2ce00880g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of crystalline porous organic framework materials (CPOFs), such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and hydrogen bonded organic frameworks (HOFs) have received extensive attentions due to...
Collapse
|