1
|
Price CAH, Torres-Lopez A, Evans R, Hondow NS, Isaacs MA, Jamal AS, Parlett CMA. Impact of Porous Silica Nanosphere Architectures on the Catalytic Performance of Supported Sulphonic Acid Sites for Fructose Dehydration to 5-Hydroxymethylfurfural. Chempluschem 2023; 88:e202300413. [PMID: 37796663 DOI: 10.1002/cplu.202300413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
5-hydroxymethylfurfural represents a key chemical in the drive towards a sustainable circular economy within the chemical industry. The final step in 5-hydroxymethylfurfural production is the acid catalysed dehydration of fructose, for which supported organoacids are excellent potential catalyst candidates. Here we report a range of solid acid catalysis based on sulphonic acid grafted onto different porous silica nanosphere architectures, as confirmed by TEM, N2 porosimetry, XPS and ATR-IR. All four catalysts display enhanced active site normalised activity and productivity, relative to alternative silica supported equivalent systems in the literature, with in-pore diffusion of both substrate and product key to both performance and humin formation pathway. An increase in-pore diffusion coefficient of 5-hydroxymethylfurfural within wormlike and stellate structures results in optimal productivity. In contrast, poor diffusion within a raspberry-like morphology decreases rates of 5-hydroxymethylfurfural production and increases its consumption within humin formation.
Collapse
Affiliation(s)
- Cameron-Alexander H Price
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Antonio Torres-Lopez
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Robert Evans
- Aston Institute of Materials Research, Aston University, Birmingham, B4 7ET, UK
| | - Nicole S Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark A Isaacs
- HarwellXPS, Research Complex at Harwell, Rutherford Appleton Lab, Didcot, OX11 0FA, UK
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Aina Syahida Jamal
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
| | - Christopher M A Parlett
- Department of Chemical Engineering, The University of Manchester, Manchester, M13 9PL, UK
- UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, UK
- University of Manchester at Harwell, Oxfordshire, OX11 0DE, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire, OX11 0DE, UK
| |
Collapse
|
2
|
Sur S, Mondal R, Thimmappa R, Mukhopadhyay S, Thotiyl MO. Aqueous OH−/H+ dual-ion gradient assisted electricity effective electro-organic synthesis of 2,5-furandicarboxylic acid paired with hydrogen fuel generation. J Colloid Interface Sci 2023; 630:477-483. [DOI: 10.1016/j.jcis.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/11/2022]
|
3
|
Xing M, Zhang D, Liu D, Song C, Wang D. Surface engineering of carbon-coated cobalt-doped nickel phosphides bifunctional electrocatalyst for boosting 5-hydroxymethylfurfural oxidation coupled with hydrogen evolution. J Colloid Interface Sci 2023; 629:451-460. [PMID: 36166970 DOI: 10.1016/j.jcis.2022.09.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
Multiple surface/interface engineering is an effective approach to develop efficient electrocatalysts for promoting the practical application of electrocatalysis and achieving carbon neutrality. Herein, a deep eutectic liquid precursor containing phosphorus was designed. The self-supported three-dimensional (3D) cobalt-doped Ni12P5/Ni3P nanowire networks coated with a thin layer of carbon (Co-NixP@C) were prepared by using an in-situ one-step pyrolysis method. The as-obtained Co-NixP@C hybrid possesses a superaerophobic/superhydrophilic surface, which could promote electrolyte diffusion and enhance bubble release. Density functional theory (DFT) calculations reveal that Co-doping in NixP@C can promote the adsorption and activation of 5-hydroxymethylfurfural (HMF) molecules, and optimize the energy barrier of H* absorption. The self-supported Co-NixP@C was used as an efficient bifunctional electrocatalyst for HMF oxidation coupled with hydrogen evolution reaction (HER) in a 1.0 M KOH solution. A nearly 100 % yield of 2,5-furandicarboxylic acid (FDCA) was achieved. The self-supported Co-NixP@C displayed high activity and stability for both HER and HMF conversion. The HMF oxidation coupled with HER can be efficiently driven by a 1.5 V commercial photovoltaic panel under sunlight. This study lays the foundation for large-scale industrialization in sustainable fine-chemical and energy engineering.
Collapse
Affiliation(s)
- Miaomiao Xing
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Deliang Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Dongzheng Liu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Caixia Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Debao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
4
|
Zhou Y, Lv S, Li H, Wu Q, Chen T, Liu S, Li W, Yang W, Chen Z. MIL-47(V)-derived carbon-doped vanadium oxide for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Dalton Trans 2022; 51:18473-18479. [PMID: 36421021 DOI: 10.1039/d2dt03338k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The development and transformation of biomass-derived platform compounds is a sustainable way to deal with the fossil fuel crisis. 5-Hydroxymethylfurfural (HMF) can be reduced or oxidized to produce many high-value compounds; however, it is challenging to effectively produce 2,5-diformylfuran (DFF) due to overoxidation. In this work, a carbon-doped V2O5 (C-V2O5) material was obtained through pyrolysis of MIL-47(V) nanorods, a typical metal-organic framework material. The X-ray diffraction patterns and X-ray photoelectron spectra showed that the graphitized carbon species were incorporated in C-V2O5. High-efficiency HMF oxidation, high specific selectivity for DFF and excellent recycling could be achieved with the C-V2O5 catalyst. Fourier-transform infrared spectroscopy combined with density functional theory (DFT) calculation revealed that graphitized carbon weakens the VO bond and promotes the formation of oxygen vacancies in C-V2O5, thus improving the catalytic activity in the oxidation of furfuryl alcohols. The V4+ induced by oxygen vacancies will be oxidized by O2 to form V5+, so that the cycle can be realized. It exhibits remarkable selectivity in the oxidation of different alcohols produced from biomass based on the relatively constant active sites in C-V2O5.
Collapse
Affiliation(s)
- Yan Zhou
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shanshan Lv
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Han Li
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qikang Wu
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Taiyu Chen
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shaohuan Liu
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Wanying Li
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Wenjuan Yang
- Julong College, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Zheng Chen
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
5
|
Nguyen QNB, Phan HB, Nguyen TH, Doan VTC, Nguyen LB, Nguyen HT, Tran PH. Direct and low-cost transformation of glucose to 2,5-diformylfuran by AlCl3·6H2O, sulfur, and dimethyl sulfoxide. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Effective Production of 5-Hydroxymethylfurfural from Fructose over a Highly Active Sulfonic Acid Functionalized SBA-15 Catalyst. Catalysts 2022. [DOI: 10.3390/catal12090984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Utilizing sugar compounds (such as fructose) as feedstock for conversion to HMF is very appealing, because it makes the production processes sustainable and improves the economic viability of platform molecules derived from biomass. Here, SBA-15 with sulfonic acid functionalization was created as a heterogeneous base catalyst for fructose hydrolysis reactions to create significant platform chemicals. A fructose conversion rate as high as 100%, along with a 78.7% yield of HMF, were obtained in DMSO at 130 °C after 1 h. The excellent catalytic performance of SBA-15-SO3H in fructose hydrolysis reactions was confirmed by the activation energy’s low value (56.99 kJ/mol). The mild conditions, fast rate of reaction, and simple operation are worth mentioning for other catalysts. SBA-15-SO3H has the potential to promote fructose conversion at lower temperatures.
Collapse
|