1
|
Fleury JB, Baulin VA. Aging affects the mechanical interaction between microplastics and lipid bilayers. J Chem Phys 2024; 161:144902. [PMID: 39377336 DOI: 10.1063/5.0232678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024] Open
Abstract
Plastic pellets, the pre-production form of many plastic products, undergo oxidation and photodegradation upon exposure to oxygen and sunlight, resulting in visible color changes. This study examines the impact of environmental aging on the mechanical interactions between pellet-derived microplastics and lipid bilayers, a critical component of biological membranes. Polyethylene pellets were collected from La Pineda beach near Tarragona, Spain, and categorized by chemical composition and yellowing index, an indicator of aging. The hydrophilicity of these pellets was assessed using contact angle measurements. Microplastics were produced by grinding and filtering these pellets and subsequently dispersed around a free-standing lipid bilayer within a 3D microfluidic chip to investigate their interactions. Our results reveal that aged microplastics exhibit a significantly increased adhesive interaction with lipid bilayers, leading to greater bilayer stretching. Theoretical modeling indicates a linear relationship between the adhesive interaction and the contact angle of the pellets, reflecting their hydrophilicity. These findings emphasize the increased mechanical impact of aged microplastics on biological membranes, which raises concerns about their potential toxicological effects on living organisms. This study highlights the importance of understanding the interactions between environmentally aged microplastics and biological systems to assess their risks, as these may differ significantly from pristine microplastics often studied under laboratory conditions.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Quimica, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
2
|
Fleury JB, Baulin VA. Synergistic Effects of Microplastics and Marine Pollutants on the Destabilization of Lipid Bilayers. J Phys Chem B 2024; 128:8753-8761. [PMID: 39219546 PMCID: PMC11403677 DOI: 10.1021/acs.jpcb.4c03290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 09/04/2024]
Abstract
Microplastics have been detected in diverse environments, including soil, snowcapped mountains, and even within human organs and blood. These findings have sparked extensive research into the health implications of microplastics for living organisms. Recent studies have shown that microplastics can adsorb onto lipid membranes and induce mechanical stress. In controlled laboratory conditions, the behavior and effects of microplastics can differ markedly from those in natural environments. In this study, we investigate how exposure of microplastics to pollutants affects their interactions with lipid bilayers. Our findings reveal that pollutants, such as chemical solvents, significantly enhance the mechanical stretching effects of microplastics. This suggests that microplastics can act as vectors for harmful pollutants, facilitating their penetration through lipid membranes and thus strongly affect their biophysical properties. This research underscores the complex interplay between microplastics and environmental contaminants.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Experimental Physics and Center for Biophysics, Universitat des Saarlandes, 66123 Saarbruecken, Germany
| | - Vladimir A Baulin
- Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. dels Països Catalans, 26, 43007 Tarragona, Spain
| |
Collapse
|
3
|
Wang Y, Zhao X, Tang H, Wang Z, Ge X, Hu S, Li X, Guo S, Liu R. The size-dependent effects of nanoplastics in mouse primary hepatocytes from cells to molecules. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124239. [PMID: 38810687 DOI: 10.1016/j.envpol.2024.124239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/02/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Nanoplastics (NPs) are easily ingested by organisms and their major accumulation organ was determined to be liver. To date, the size-dependent cytotoxicity of NPs on mammalian hepatocytes remains unclear. This study utilized mouse primary hepatocytes and catalase (CAT) as specific receptors to investigate the toxicity of NPs from cells to molecules, focusing on size-dependent effects. Results showed that the larger the particle size of NP at low doses (≤50 mg/L), the most pronounced inhibitory effect on hepatocyte viability. 20 nm NPs significantly inhibit cell viability only at high doses (100 mg/L). Larger NP particles (500 nm and 1000 nm) resulted in a massive release of lactate dehydrogenase (LDH) from the cell (cell membrane damage). Reactive oxygen species (ROS), superoxide dismutase (SOD) and CAT tests suggest that NPs disturbed the cellular antioxidant system. 20 nm NPs show great strength in oxidizing lipids and disrupting mitochondrial function compared to NPs of other particle sizes. The degree of inhibition of CAT activity by different sized NPs was coherent at the cellular and molecular levels, and NP-500 had the most impact. This suggests that the structure and microenvironment of the polypeptide chain in the vicinity of the CAT active site is more susceptible to proximity and alteration by NP-500. In addition, the smaller NPs are capable of inducing relaxation of CAT backbone, disruption of H-bonding and reduction of α-helix content, whereas the larger NPs cause contraction of CAT backbone and increase in α-helix content. All NPs induce CAT fluorescence sensitization and make the chromophore microenvironment hydrophobic. This study provides new insights for NP risk assessment and applications.
Collapse
Affiliation(s)
- Yaoyue Wang
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingchen Zhao
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Houquan Tang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Zaifeng Wang
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Xuan Ge
- Jinan Ecological and Environmental Monitoring Center, Jinan, 250104, China
| | - Shaoyang Hu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiangxiang Li
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Shuqi Guo
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, Shandong Province, 72# Jimo Binhai Road, Qingdao, Shandong, 266237, China.
| |
Collapse
|
4
|
Zhu J, Ma J, Huang M, Deng H, Shi G. Emerging delivery strategy for oncolytic virotherapy. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200809. [PMID: 38845744 PMCID: PMC11153257 DOI: 10.1016/j.omton.2024.200809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 06/09/2024]
Abstract
Oncolytic virotherapy represents a promising approach in cancer immunotherapy. The primary delivery method for oncolytic viruses (OVs) is intratumoral injection, which apparently limits their clinical application. For patients with advanced cancer with disseminated metastasis, systemic administration is considered the optimal approach. However, the direct delivery of naked viruses through intravenous injection presents challenges, including rapid clearance by the immune system, inadequate accumulation in tumors, and significant side effects. Consequently, the development of drug delivery strategies has led to the emergence of various bio-materials serving as viral vectors, thereby improving the anti-tumor efficacy of oncolytic virotherapy. This review provides an overview of innovative strategies for delivering OVs, with a focus on nanoparticle-based or cell-based delivery systems. Recent pre-clinical and clinical studies are examined to highlight the enhanced efficacy of systemic delivery using these novel platforms. In addition, prevalent challenges in current research are briefly discussed, and potential solutions are proposed.
Collapse
Affiliation(s)
- Jiao Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Boselli L, Castagnola V, Armirotti A, Benfenati F, Pompa PP. Biomolecular Corona of Gold Nanoparticles: The Urgent Need for Strong Roots to Grow Strong Branches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306474. [PMID: 38085683 DOI: 10.1002/smll.202306474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/30/2023] [Revised: 10/20/2023] [Indexed: 04/13/2024]
Abstract
Gold nanoparticles (GNPs) are largely employed in diagnostics/biosensors and are among the most investigated nanomaterials in biology/medicine. However, few GNP-based nanoformulations have received FDA approval to date, and promising in vitro studies have failed to translate to in vivo efficacy. One key factor is that biological fluids contain high concentrations of proteins, lipids, sugars, and metabolites, which can adsorb/interact with the GNP's surface, forming a layer called biomolecular corona (BMC). The BMC can mask prepared functionalities and target moieties, creating new surface chemistry and determining GNPs' biological fate. Here, the current knowledge is summarized on GNP-BMCs, analyzing the factors driving these interactions and the biological consequences. A partial fingerprint of GNP-BMC analyzing common patterns of composition in the literature is extrapolated. However, a red flag is also risen concerning the current lack of data availability and regulated form of knowledge on BMC. Nanomedicine is still in its infancy, and relying on recently developed analytical and informatic tools offers an unprecedented opportunity to make a leap forward. However, a restart through robust shared protocols and data sharing is necessary to obtain "stronger roots". This will create a path to exploiting BMC for human benefit, promoting the clinical translation of biomedical nanotools.
Collapse
Affiliation(s)
- Luca Boselli
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| | - Valentina Castagnola
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Via Morego 30, Genova, 16163, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, Genova, 16132, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, Genova, 16132, Italy
| | - Pier Paolo Pompa
- Nanobiointeractions & Nanodiagnostics, Istituto Italiano di Tecnologia (IIT), Via Morego 30, Genova, 16163, Italy
| |
Collapse
|
6
|
Mashali F, Basham CM, Xu X, Servidio C, Silva PHJ, Stellacci F, Sarles SA. Simultaneous Electrophysiology and Imaging Reveal Changes in Lipid Membrane Thickness and Tension upon Uptake of Amphiphilic Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15031-15045. [PMID: 37812767 DOI: 10.1021/acs.langmuir.3c01973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/11/2023]
Abstract
Amphiphilic gold core nanoparticles (AmNPs) striped with hydrophilic 11-mercapto-1-undecanesulfonate (MUS) and hydrophobic 1-octanethiol (OT) ligands are promising candidates for drug carriers that passively and nondisruptively enter cells. Yet, how they interact with cellular membranes is still only partially understood. Herein, we use electrophysiology and imaging to carefully assess changes in droplet interface bilayer lipid membranes (DIBs) incurred by striped AmNPs added via microinjection. We find that AmNPs spontaneously reduce the steady-state specific capacitance and contact angle of phosphatidylcholine DIBs by amounts dependent on the final NP concentration. These reductions, which are greater for NPs with a higher % OT ligands and membranes containing unsaturated lipids but negligible for MUS-only-coated NPs, reveal that AmNPs passively embed in the interior of the bilayer where they increase membrane thickness and lateral tension through disruption of lipid packing. These results demonstrate the enhanced evaluation of nano-bio interactions possible via electrophysiology and imaging of DIBs.
Collapse
Affiliation(s)
- Farzin Mashali
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Colin M Basham
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Xufeng Xu
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Camilla Servidio
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paulo H Jacob Silva
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Stephen A Sarles
- Department of Mechanical, Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
7
|
Fernández-Gómez P, Pérez de la Lastra Aranda C, Tosat-Bitrián C, Bueso de Barrio JA, Thompson S, Sot B, Salas G, Somoza Á, Espinosa A, Castellanos M, Palomo V. Nanomedical research and development in Spain: improving the treatment of diseases from the nanoscale. Front Bioeng Biotechnol 2023; 11:1191327. [PMID: 37545884 PMCID: PMC10401050 DOI: 10.3389/fbioe.2023.1191327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/21/2023] [Accepted: 05/23/2023] [Indexed: 08/08/2023] Open
Abstract
The new and unique possibilities that nanomaterials offer have greatly impacted biomedicine, from the treatment and diagnosis of diseases, to the specific and optimized delivery of therapeutic agents. Technological advances in the synthesis, characterization, standardization, and therapeutic performance of nanoparticles have enabled the approval of several nanomedicines and novel applications. Discoveries continue to rise exponentially in all disease areas, from cancer to neurodegenerative diseases. In Spain, there is a substantial net of researchers involved in the development of nanodiagnostics and nanomedicines. In this review, we summarize the state of the art of nanotechnology, focusing on nanoparticles, for the treatment of diseases in Spain (2017-2022), and give a perspective on the future trends and direction that nanomedicine research is taking.
Collapse
Affiliation(s)
- Paula Fernández-Gómez
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Carmen Pérez de la Lastra Aranda
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
| | - Carlota Tosat-Bitrián
- Centro de Investigaciones Biológicas Margarita Salas-CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Sebastián Thompson
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Begoña Sot
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Unidad de Innovación Biomédica, Madrid, Spain
- Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJ UAM), Madrid, Spain
| | - Gorka Salas
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Álvaro Somoza
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| | - Ana Espinosa
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Instituto de Ciencia de Materiales de Madrid, ICMM-CSIC, Madrid, Spain
| | - Milagros Castellanos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
| | - Valle Palomo
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Unidad Asociada al Centro Nacional de Biotecnología (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Kumar Y, Sinha ASK, Nigam KDP, Dwivedi D, Sangwai JS. Functionalized nanoparticles: Tailoring properties through surface energetics and coordination chemistry for advanced biomedical applications. NANOSCALE 2023; 15:6075-6104. [PMID: 36928281 DOI: 10.1039/d2nr07163k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/18/2023]
Abstract
Significant advances in nanoparticle-related research have been made in the past decade, and amelioration of properties is considered of utmost importance for improving nanoparticle bioavailability, specificity, and catalytic performance. Nanoparticle properties can be tuned through in-synthesis and post-synthesis functionalization operations, with thermodynamic and kinetic parameters playing a crucial role. In spite of robust functionalization techniques based on surface chemistry, scalable technologies have not been explored well. The coordination enhancement via surface functionalization through organic/inorganic/biomolecules material has attracted much attention with morphology modification and shape tuning, which are indispensable aspects in the colloidal phase during biomedical applications. It is envisioned that surface amelioration influences the anchoring properties of nano interfaces for the immobilization of functional groups and biomolecules. In this work, various nanostructure and anchoring methodologies have been discussed, aiming to exploit their full potential in precision engineering applications. Simultaneous discussions on emerging characterization strategies for functionalized assemblies have been made to gain insights into functionalization chemistry. An overview of current advances and prospects of functionalized nanoparticles has been presented, with an emphasis on controllable attributes such as size, shape, morphology, functionality, surface features, Debye and Casimir interactions.
Collapse
Affiliation(s)
- Yogendra Kumar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| | - A S K Sinha
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - K D P Nigam
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
- School of Chemical Engineering, University of Adelaide, North Terrace Campus, Adelaide (SA) 5005, Australia
| | - Deepak Dwivedi
- Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Jais - 229304, India.
| | - Jitendra S Sangwai
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai - 600036, India.
| |
Collapse
|
9
|
Traldi F, Liu P, Albino I, Ferreira L, Zarbakhsh A, Resmini M. Protein-Nanoparticle Interactions Govern the Interfacial Behavior of Polymeric Nanogels: Study of Protein Corona Formation at the Air/Water Interface. Int J Mol Sci 2023; 24:2810. [PMID: 36769129 PMCID: PMC9917661 DOI: 10.3390/ijms24032810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/11/2023] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Biomedical applications of nanoparticles require a fundamental understanding of their interactions and behavior with biological interfaces. Protein corona formation can alter the morphology and properties of nanomaterials, and knowledge of the interfacial behavior of the complexes, using in situ analytical techniques, will impact the development of nanocarriers to maximize uptake and permeability at cellular interfaces. In this study we evaluate the interactions of acrylamide-based nanogels, with neutral, positive, and negative charges, with serum-abundant proteins albumin, fibrinogen, and immunoglobulin G. The formation of a protein corona complex between positively charged nanoparticles and albumin is characterized by dynamic light scattering, circular dichroism, and surface tensiometry; we use neutron reflectometry to resolve the complex structure at the air/water interface and demonstrate the effect of increased protein concentration on the interface. Surface tensiometry data suggest that the structure of the proteins can impact the interfacial properties of the complex formed. These results contribute to the understanding of the factors that influence the bio-nano interface, which will help to design nanomaterials with improved properties for applications in drug delivery.
Collapse
Affiliation(s)
- Federico Traldi
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Pengfei Liu
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Inês Albino
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
| | - Lino Ferreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC, Biotech Parque Tecnológico de Cantanhede, 3060-197 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3060-197 Coimbra, Portugal
| | - Ali Zarbakhsh
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| | - Marina Resmini
- Department of Chemistry, SPCS, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
10
|
Promises and challenges for targeting the immunological players in the tumor micro-environment – Critical determinants for NP-based therapy. OPENNANO 2023. [DOI: 10.1016/j.onano.2023.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/25/2023]
|
11
|
Fleury JB, Baulin VA, Le Guével X. Protein-coated nanoparticles exhibit Lévy flights on a suspended lipid bilayer. NANOSCALE 2022; 14:13178-13186. [PMID: 36043913 DOI: 10.1039/d2nr01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
Lateral diffusion of nano-objects on lipid membranes is a crucial process in cell biology. Recent studies indicate that nanoparticle lateral diffusion is affected by the presence of membrane proteins and deviates from Brownian motion. Gold nanoparticles (Au NPs) stabilized by short thiol ligands were dispersed near a free-standing bilayer formed in a 3D microfluidic chip. Using dark-field microscopy, the position of single NPs at the bilayer surface was tracked over time. Numerical analysis of the NP trajectories shows that NP diffusion on the bilayer surface corresponds to Brownian motion. The addition of bovine serum albumin (BSA) protein to the solution led to the formation of a protein corona on the NP surface. We found that protein-coated NPs show anomalous superdiffusion and that the distribution of their relative displacement obeys Lévy flight statistics. This superdiffusive motion is attributed to a drastic reduction in adhesive energies between the NPs and the bilayer in the presence of the protein corona. This hypothesis was confirmed by numerical simulations mimicking the random walk of a single particle near a weakly adhesive surface. These results may be generalized to other classes of nano-objects that experience adsorption-desorption behaviour with a weakly adhesive surface.
Collapse
Affiliation(s)
- Jean-Baptiste Fleury
- Universitat des Saarlandes, Experimental Physics and Center for Biophysics, 66123 Saarbruecken, Germany.
| | - Vladimir A Baulin
- Departament Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, 43007 Tarragona, Spain
| | - Xavier Le Guével
- Cancer Targets & Experimental Therapeutics, Institute for Advanced Biosciences (IAB), University of Grenoble Alpes - INSERM U1209 - CNRS UMR 5309-38000 Grenoble, France
| |
Collapse
|
12
|
Wang X, Zhang W. The Janus of Protein Corona on nanoparticles for tumor targeting, immunotherapy and diagnosis. J Control Release 2022; 345:832-850. [PMID: 35367478 DOI: 10.1016/j.jconrel.2022.03.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
The therapeutics based on nanoparticles (NPs) are considered as the promising strategy for tumor detection and treatment. However, one of the most challenges is the adsorption of biomolecules on NPs after their exposition to biological medium, leading unpredictable in vivo behaviors. The interactions caused by protein corona (PC) will influence the biological fate of NPs in either negative or positive ways, including (i) blood circulation, accumulation and penetration of NPs at targeting sites, and further cellular uptake in tumor targeting delivery; (ii) interactions between NPs and receptors on immune cells for immunotherapy. Besides, PC on NPs could be utilized as new biomarker in tumor diagnosis by identifying the minor change of protein concentration led by tumor growth and invasion in blood. Herein, the mechanisms of these PC-mediated effects will be introduced. Moreover, the recent advances about the strategies will be reviewed to reduce negative effects caused by PC and/or utilize positive effects of PC on tumor targeting, immunotherapy and diagnosis, aiming to provide a reasonable perspective to recognize PC with their applications.
Collapse
Affiliation(s)
- Xiaobo Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Wenli Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
13
|
Puza S, Caesar S, Poojari C, Jung M, Seemann R, Hub JS, Schrul B, Fleury JB. Lipid Droplets Embedded in a Model Cell Membrane Create a Phospholipid Diffusion Barrier. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106524. [PMID: 35072348 DOI: 10.1002/smll.202106524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/26/2021] [Revised: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Lipid droplets (LDs) are ubiquitous, cytoplasmic fat storage organelles that originate from the endoplasmic reticulum (ER) membrane. They are composed of a core of neutral lipids surrounded by a phospholipid monolayer. Proteins embedded into this monolayer membrane adopt a monotopic topology and are crucial for regulated lipid storage and consumption. A key question is, which collective properties of protein-intrinsic and lipid-mediated features determine spatio-temporal protein partitioning between phospholipid bilayer and LD monolayer membranes. To address this question, a freestanding phospholipid bilayer with physiological lipidic composition is produced using microfluidics and micrometer-sized LDs are dispersed around the bilayer that spontaneously insert into the bilayer. Using confocal microscopy, the 3D geometry of the reconstituted LDs is determined with high spatial resolution. The micrometer-sized bilayer-embedded LDs present a characteristic lens shape that obeys predictions from equilibrium wetting theory. Fluorescence recovery after photobleaching measurements reveals the existence of a phospholipid diffusion barrier at the monolayer-bilayer interface. Coarse-grained molecular dynamics simulation reveals lipid specific density distributions along the pore rim, which may rationalize the diffusion barrier. The lipid diffusion barrier between the LD covering monolayer and the bilayer may be a key phenomenon influencing protein partitioning between the ER membrane and LDs in living cells.
Collapse
Affiliation(s)
- Sevde Puza
- Saarland University, Experimental Physics and Center for Biophysics (ZBP), Saarland University, 66123, Saarbrücken, Germany
| | - Stefanie Caesar
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg, Germany
| | - Chetan Poojari
- Saarland University, Theoretical Physics and Center for Biophysics (ZBP), Saarland University, 66123, Saarbrücken, Germany
| | - Michael Jung
- Saarland University, Experimental Physics and Center for Biophysics (ZBP), Saarland University, 66123, Saarbrücken, Germany
| | - Ralf Seemann
- Saarland University, Experimental Physics and Center for Biophysics (ZBP), Saarland University, 66123, Saarbrücken, Germany
| | - Jochen S Hub
- Saarland University, Theoretical Physics and Center for Biophysics (ZBP), Saarland University, 66123, Saarbrücken, Germany
| | - Bianca Schrul
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling (PZMS), Faculty of Medicine, Saarland University, 66421, Homburg, Germany
| | - Jean-Baptiste Fleury
- Saarland University, Experimental Physics and Center for Biophysics (ZBP), Saarland University, 66123, Saarbrücken, Germany
| |
Collapse
|
14
|
Ray P, Lodha T, Biswas A, Sau TK, Ramana CV. Particle specific physical and chemical effects on antibacterial activities: A comparative study involving gold nanostars, nanorods and nanospheres. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
|