1
|
Rong J, Liu T, Yin X, Shao M, Zhu K, Li B, Wang S, Zhu Y, Zhang S, Yin L, Liu Q, Wang X, Zhang L. Co-delivery of camptothecin and MiR-145 by lipid nanoparticles for MRI-visible targeted therapy of hepatocellular carcinoma. J Exp Clin Cancer Res 2024; 43:247. [PMID: 39215325 PMCID: PMC11363558 DOI: 10.1186/s13046-024-03167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Camptothecin (CPT) is one of the frequently used small chemotherapy drugs for treating hepatocellular carcinoma (HCC), but its clinical application is limited due to severe toxicities and acquired resistance. Combined chemo-gene therapy has been reported to be an effective strategy for counteracting drug resistance while sensitizing cancer cells to cytotoxic agents. Thus, we hypothesized that combining CPT with miR-145 could synergistically suppress tumor proliferation and enhance anti-tumor activity. METHODS Lactobionic acid (LA) modified lipid nanoparticles (LNPs) were developed to co-deliver CPT and miR-145 into asialoglycoprotein receptors-expressing HCC in vitro and in vivo. We evaluated the synergetic antitumor effect of miR-145 and CPT using CCK8, Western blotting, apoptosis and wound scratch assay in vitro, and the mechanisms underlying the synergetic antitumor effects were further investigated. Tumor inhibitory efficacy, safety evaluation and MRI-visible ability were assessed using diethylnitrosamine (DEN) + CCl4-induced HCC mouse model. RESULTS The LA modification improved the targeting delivery of cargos to HCC cells and tissues. The LA-CMGL-mediated co-delivery of miR-145 and CPT is more effective on tumor inhibitory than LA-CPT-L or LA-miR-145-L treatment alone, both in vitro and in vivo, with almost no side effects during the treatment period. Mechanistically, miR-145 likely induces apoptosis by targeting SUMO-specific peptidase 1 (SENP1)-mediated hexokinase (HK2) SUMOylation and glycolysis pathways and, in turn, sensitizing the cancer cells to CPT. In vitro and in vivo tests confirmed that the loaded Gd-DOTA served as an effective T1-weighted contrast agent for noninvasive tumor detection as well as real-time monitoring of drug delivery and biodistribution. CONCLUSIONS The LA-CMGL-mediated co-delivery of miR-145 and CPT displays a synergistic therapy against HCC. The novel MRI-visible, actively targeted chemo-gene co-delivery system for HCC therapy provides a scientific basis and a useful idea for the development of HCC treatment strategies in the future.
Collapse
Affiliation(s)
- Jing Rong
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Tongtong Liu
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Xiujuan Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Min Shao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Kun Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Bin Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Shiqi Wang
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China
| | - Yujie Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Saisai Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Likang Yin
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China
| | - Qi Liu
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| | - Xiao Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, China.
| | - Lei Zhang
- School of Pharmacy, Key Laboratory of Anti-inflammatory of Immune Medicines of Ministry of Education, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
2
|
Zhang D, Wang C, Chen T, Chen W, Shen Y. Scalable Swin Transformer network for brain tumor segmentation from incomplete MRI modalities. Artif Intell Med 2024; 149:102788. [PMID: 38462288 DOI: 10.1016/j.artmed.2024.102788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/19/2023] [Accepted: 01/25/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Deep learning methods have shown great potential in processing multi-modal Magnetic Resonance Imaging (MRI) data, enabling improved accuracy in brain tumor segmentation. However, the performance of these methods can suffer when dealing with incomplete modalities, which is a common issue in clinical practice. Existing solutions, such as missing modality synthesis, knowledge distillation, and architecture-based methods, suffer from drawbacks such as long training times, high model complexity, and poor scalability. METHOD This paper proposes IMS2Trans, a novel lightweight scalable Swin Transformer network by utilizing a single encoder to extract latent feature maps from all available modalities. This unified feature extraction process enables efficient information sharing and fusion among the modalities, resulting in efficiency without compromising segmentation performance even in the presence of missing modalities. RESULTS Two datasets, BraTS 2018 and BraTS 2020, containing incomplete modalities for brain tumor segmentation are evaluated against popular benchmarks. On the BraTS 2018 dataset, our model achieved higher average Dice similarity coefficient (DSC) scores for the whole tumor, tumor core, and enhancing tumor regions (86.57, 75.67, and 58.28, respectively), in comparison with a state-of-the-art model, i.e. mmFormer (86.45, 75.51, and 57.79, respectively). Similarly, on the BraTS 2020 dataset, our model scored higher DSC scores in these three brain tumor regions (87.33, 79.09, and 62.11, respectively) compared to mmFormer (86.17, 78.34, and 60.36, respectively). We also conducted a Wilcoxon test on the experimental results, and the generated p-value confirmed that our model's performance was statistically significant. Moreover, our model exhibits significantly reduced complexity with only 4.47 M parameters, 121.89G FLOPs, and a model size of 77.13 MB, whereas mmFormer comprises 34.96 M parameters, 265.79 G FLOPs, and a model size of 559.74 MB. These indicate our model, being light-weighted with significantly reduced parameters, is still able to achieve better performance than a state-of-the-art model. CONCLUSION By leveraging a single encoder for processing the available modalities, IMS2Trans offers notable scalability advantages over methods that rely on multiple encoders. This streamlined approach eliminates the need for maintaining separate encoders for each modality, resulting in a lightweight and scalable network architecture. The source code of IMS2Trans and the associated weights are both publicly available at https://github.com/hudscomdz/IMS2Trans.
Collapse
Affiliation(s)
- Dongsong Zhang
- School of Big Data and Artificial Intelligence, Xinyang College, Xinyang, 464000, Henan, China; School of Computing and Engineering, University of Huddersfield, Huddersfield, HD13DH, UK
| | - Changjian Wang
- National Key Laboratory of Parallel and Distributed Computing, Changsha, 410073, Hunan, China
| | - Tianhua Chen
- School of Computing and Engineering, University of Huddersfield, Huddersfield, HD13DH, UK
| | - Weidao Chen
- Beijing Infervision Technology Co., Ltd., Beijing, 100020, China
| | - Yiqing Shen
- Department of Computer Science, Johns Hopkins University, Baltimore, 21218, MD, USA.
| |
Collapse
|
3
|
Han Q, Du L, Zhu L, Yu D. Review of the Application of Dual Drug Delivery Nanotheranostic Agents in the Diagnosis and Treatment of Liver Cancer. Molecules 2023; 28:7004. [PMID: 37894483 PMCID: PMC10608862 DOI: 10.3390/molecules28207004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/16/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Liver cancer has high incidence and mortality rates and its treatment generally requires the use of a combination treatment strategy. Therefore, the early detection and diagnosis of liver cancer is crucial to achieving the best treatment effect. In addition, it is imperative to explore multimodal combination therapy for liver cancer treatment and the synergistic effect of two liver cancer treatment drugs while preventing drug resistance and drug side effects to maximize the achievable therapeutic effect. Gold nanoparticles are used widely in applications related to optical imaging, CT imaging, MRI imaging, biomarkers, targeted drug therapy, etc., and serve as an advanced platform for integrated application in the nano-diagnosis and treatment of diseases. Dual-drug-delivery nano-diagnostic and therapeutic agents have drawn great interest in current times. Therefore, the present report aims to review the effectiveness of dual-drug-delivery nano-diagnostic and therapeutic agents in the field of anti-tumor therapy from the particular perspective of liver cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Qinghe Han
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lianze Du
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Lili Zhu
- Radiology Department, The Second Affiliated Hospital of Jilin University, Changchun 130062, China; (Q.H.); (L.D.); (L.Z.)
| | - Duo Yu
- Department of Radiotherapy, The Second Affiliated Hospital of Jilin University, Changchun 130062, China
| |
Collapse
|
4
|
Achieving a “all in one” Fe/Tm-MOFs with controllable photothermal and catalytic performance for imaging-guided multi-modal synergetic therapy. J Colloid Interface Sci 2022; 623:124-134. [DOI: 10.1016/j.jcis.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/20/2022]
|
5
|
Eras A, Castillo D, Suárez M, Vispo NS, Albericio F, Rodriguez H. Chemical Conjugation in Drug Delivery Systems. Front Chem 2022; 10:889083. [PMID: 35720996 PMCID: PMC9204480 DOI: 10.3389/fchem.2022.889083] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is one of the diseases with the highest mortality rate. Treatments to mitigate cancer are usually so intense and invasive that they weaken the patient to cure as dangerous as the own disease. From some time ago until today, to reduce resistance generated by the constant administration of the drug and improve its pharmacokinetics, scientists have been developing drug delivery system (DDS) technology. DDS platforms aim to maximize the drugs’ effectiveness by directing them to reach the affected area by the disease and, therefore, reduce the potential side effects. Erythrocytes, antibodies, and nanoparticles have been used as carriers. Eleven antibody–drug conjugates (ADCs) involving covalent linkage has been commercialized as a promising cancer treatment in the last years. This review describes the general features and applications of DDS focused on the covalent conjugation system that binds the antibody carrier to the cytotoxic drug.
Collapse
Affiliation(s)
- Alexis Eras
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Danna Castillo
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
| | - Margarita Suárez
- Laboratorio de Síntesis Orgánica, Facultad de Química, Universidad de la Habana, La Habana, Cuba
| | - Nelson Santiago Vispo
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Fernando Albericio
- Department of Surfactants and Nanobiotechnology, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
- CIBER-BBN, Networking Centre of Bioengineering, Biomaterials, and Nanomedicine and Department of Organic Chemistry, University of Barcelona, Barcelona, Spain
- School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| | - Hortensia Rodriguez
- School of Chemical Sciences and Engineering, Yachay Tech University, Urcuquí, Ecuador
- *Correspondence: Nelson Santiago Vispo, ; Fernando Albericio, ; Hortensia Rodriguez,
| |
Collapse
|
6
|
Aslani R, Namazi H. Synthesis of a new polymer from arginine for the preparation of antioxidant, pH-sensitive, and photoluminescence nanocomposite as a cancer drugs carrier. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Li Q, Zhu M, Li Y, Tang H, Wang Z, Zhang Y, Xie Y, Lv Z, Bao H, Li Y, Liu R, Shen Y, Zheng Y, Miao D, Guo X, Pei J. Estrone-targeted PEGylated Liposomal Nanoparticles for Cisplatin (DDP) Delivery in Cervical Cancer. Eur J Pharm Sci 2022; 174:106187. [DOI: 10.1016/j.ejps.2022.106187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
|
8
|
Xu M, Gao H, Ji Q, Chi B, He L, Song Q, Xu Z, Li L, Wang J. Construction multifunctional nanozyme for synergistic catalytic therapy and phototherapy based on controllable performance. J Colloid Interface Sci 2021; 609:364-374. [PMID: 34902673 DOI: 10.1016/j.jcis.2021.11.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 01/19/2023]
Abstract
Advances in nanozyme involve an efficient catalytic process, which has demonstrated great potential in tumor therapy. The key to improving catalytic therapy is to solve the limitation of the tumor microenvironment on Fenton reaction. In this work, Prussian blue nanoparticles doped with different rare earth ions (Yb3+, Gd3+, Tm3+) were screened to perform synergistic of photothermalandcatalytictumortherapy. The optimized catalytic performance can be further enhanced through photothermal effect to maximize the Fenton reaction to solve the limitation of the tumor microenvironment. Yb-PB, with the optimal photothermal and catalytic performance, was screened out. In order to avoid the scavenging effect of glutathione (GSH) on ·OH in tumor cells and the reaction with a bit H2O2 in normal cells, GSH targeted polydopamine (PDA) was wrapped on the surface of Yb-PB to obtain Yb-PB@PDA. It was found that enough hydroxyl radicals (·OH) can be generated even if at high GSH concentration and the NIR irradiation can help produce more ·OH. Cell fluorescence imaging (FOI) and in vivo magnetic resonance imaging (MRI) experiments showed the potential application in FOI/MRI dual-mode imaging guided therapy. In vivo anti-tumor experiments showed that Yb-PB@PDA has a satisfactory anti-cancer effect through the combined effect of catalytic/photothermal therapy. Thus, a multifunctional nanozyme for tumor therapy is constructed.
Collapse
Affiliation(s)
- Mingyue Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Haiqing Gao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Qin Ji
- Hubei Key Laboratory of Polymer Materials, Hubei University 430062, China
| | - Bin Chi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Le He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Qian Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China
| | - Zushun Xu
- Hubei Key Laboratory of Polymer Materials, Hubei University 430062, China
| | - Ling Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei University 430062, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
9
|
Qualls ML, Sagar R, Lou J, Best MD. Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. J Phys Chem B 2021; 125:12918-12933. [PMID: 34792362 DOI: 10.1021/acs.jpcb.1c07406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to modulate the structures of lipid membranes, predicated on our nuanced understanding of the properties that drive and alter lipid self-assembly, has opened up many exciting biological applications. In this Perspective, we focus on two endeavors in which the same principles are invoked to achieve completely opposite results. On one hand, controlled liposome decomposition enables triggered release of encapsulated cargo through the development of synthetic lipid switches that perturb lipid packing in the presence of disease-associated stimuli. In particular, recent approaches have utilized artificial lipid switches designed to undergo major conformational changes in response to a range of target conditions. On the other end of the spectrum, the ability to drive the in situ formation of lipid bilayer membranes from soluble precursors is an important component in the establishment of artificial cells. This work has culminated in chemoenzymatic strategies that enable lipid manufacturing from simple components. Herein, we describe recent advancements in these two unique undertakings that are linked by their reliance on common principles of lipid self-assembly.
Collapse
Affiliation(s)
- Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
10
|
Shariatinia Z. Big family of nano- and microscale drug delivery systems ranging from inorganic materials to polymeric and stimuli-responsive carriers as well as drug-conjugates. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|