1
|
Iorio A, Perin L, Gallo P. Structure and slow dynamics of protein hydration water with cryopreserving DMSO and trehalose upon cooling. J Chem Phys 2024; 160:244502. [PMID: 38912631 DOI: 10.1063/5.0205569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
We study, through molecular dynamics simulations, three aqueous solutions with one lysozyme protein and three different concentrations of trehalose and dimethyl sulfoxide (DMSO). We analyze the structural and dynamical properties of the protein hydration water upon cooling. We find that trehalose plays a major role in modifying the structure of the network of HBs between water molecules in the hydration layer of the protein. The dynamics of hydration water presents, in addition to the α-relaxation, typical of glass formers, a slower long-time relaxation process, which greatly slows down the dynamics of water, particularly in the systems with trehalose, where it becomes dominant at low temperatures. In all the solutions, we observe, from the behavior of the α-relaxation times, a shift of the Mode Coupling Theory crossover temperature and the fragile-to-strong crossover temperature toward higher values with respect to bulk water. We also observe a strong-to-strong crossover from the temperature behavior of the long-relaxation times. In the aqueous solution with only DMSO, the transition shifts to a lower temperature than in the case with only lysozyme reported in the literature. We observe that the addition of trehalose to the mixture has the opposite effect of restoring the original location of the strong-to-strong crossover. In all the solutions analyzed in this work, the observed temperature of the protein dynamical transition is slightly shifted at lower temperatures than that of the strong-to-strong crossover, but their relative order is the same, showing a correlation between the motion of the protein and that of the hydration water.
Collapse
Affiliation(s)
- Antonio Iorio
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Leonardo Perin
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| | - Paola Gallo
- Dipartimento di Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Roma, Italy
| |
Collapse
|
2
|
Linn JD, Rodriguez FA, Calabrese MA. Cosolvent incorporation modulates the thermal and structural response of PNIPAM/silyl methacrylate copolymers. SOFT MATTER 2024; 20:3322-3336. [PMID: 38536224 DOI: 10.1039/d4sm00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Polymers functionalized with inorganic silane groups have been used in wide-ranging applications due to the silane reactivity, which enables formation of covalently-crosslinked polymeric structures. Utilizing stimuli-responsive polymers in these hybrid systems can lead to smart and tunable behavior for sensing, drug delivery, and optical coatings. Previously, the thermoresponsive polymer poly(N-isopropyl acrylamide) (PNIPAM) functionalized with 3-(trimethoxysilyl)propyl methacrylate (TMA) demonstrated unique aqueous self-assembly and optical responses following temperature elevation. Here, we investigate how cosolvent addition, particularly ethanol and N,N-dimethyl formamide (DMF), impacts these transition temperatures, optical clouding, and structure formation in NIPAM/TMA copolymers. Versus purely aqueous systems, these solvent mixtures can introduce additional phase transitions and can alter the two-phase region boundaries based on temperature and solvent composition. Interestingly, TMA incorporation strongly alters phase boundaries in the water-rich regime for DMF-containing systems but not for ethanol-containing systems. Cosolvent species and content also alter the aggregation and assembly of NIPAM/TMA copolymers, but these effects depend on polymer architecture. For example, localizing the TMA towards one chain end in 'blocky' domains leads to formation of uniform micelles with narrow dispersities above the cloud point for certain solvent compositions. In contrast, polydisperse aggregates form in random copolymer and PNIPAM homopolymer solutions - the size of which depends on solvent composition. The resulting optical responses and thermoreversibility also depend strongly on cosolvent content and copolymer architecture. Cosolvent incorporation thus increases the versatility of inorganic-functionalized responsive polymers for diverse applications by providing a simple way to tune the structure size and optical response.
Collapse
Affiliation(s)
- Jason D Linn
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Fabian A Rodriguez
- Department of Mechanical Engineering, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Michelle A Calabrese
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Trabucco L, Heath S, Shaw J, McFadden S, Wang X, Ye JY. Characterizing Conformational Change of a Thermoresponsive Polymeric Nanoparticle with Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:5713. [PMID: 37420877 PMCID: PMC10304981 DOI: 10.3390/s23125713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
Molecular conformational changes in the collapsing and reswelling processes occurring during the phase transition at the lower critical solution temperature (LCST) of the polymer are not well understood. In this study, we characterized the conformational change of Poly(oligo(Ethylene Glycol) Methyl Ether Methacrylate)-144 (POEGMA-144) synthesized on silica nanoparticles using Raman spectroscopy and zeta potential measurements. Changes in distinct Raman peaks associated with the oligo(Ethylene Glycol) (OEG) side chains (1023, 1320, and 1499 cm-1) with respect to the methyl methacrylate (MMA) backbone (1608 cm-1) were observed and investigated under increasing and decreasing temperature profiles (34 °C to 50 °C) to evaluate the polymer collapse and reswelling around its LCST (42 °C). In contrast to the zeta potential measurements that monitor the change in surface charges as a whole during the phase transition, Raman spectroscopy provided more detailed information on vibrational modes of individual molecular moieties of the polymer in responding to the conformational change.
Collapse
Affiliation(s)
- Luis Trabucco
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (L.T.); (S.H.); (J.S.); (S.M.); (X.W.)
| | - Savannah Heath
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (L.T.); (S.H.); (J.S.); (S.M.); (X.W.)
| | - Jonathan Shaw
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (L.T.); (S.H.); (J.S.); (S.M.); (X.W.)
| | - Sean McFadden
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (L.T.); (S.H.); (J.S.); (S.M.); (X.W.)
| | - Xiaodu Wang
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (L.T.); (S.H.); (J.S.); (S.M.); (X.W.)
- Department of Mechanical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Jing Yong Ye
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA; (L.T.); (S.H.); (J.S.); (S.M.); (X.W.)
| |
Collapse
|
4
|
Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Park SY, Huh YS, Venkatesu P. Effect of Imidazolium Nitrate Ionic Liquids on Conformational Changes of Poly( N-vinylcaprolactam). ACS OMEGA 2022; 7:39742-39749. [PMID: 36385857 PMCID: PMC9648054 DOI: 10.1021/acsomega.2c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Detailed information about molecular interactions and conformational changes of polymeric components in the presence of ionic liquids (ILs) is essential for designing novel polymeric ionic liquid-based biomaterials. In biomaterials science and technology, thermoresponsive polymers (TRPs) are widely viewed as potential candidates for the fabrication of biorelated medical devices. Here, we synthesized thermoresponsive poly(N-vinyl-caprolactam) (PVCL) polymer and investigated the effects of imidazolium-based ILs (1-ethyl-3-methyl imidazolium nitrate and 1-butyl-3-methylimidazolium nitrate) with common anion and different cations on the phase transition behavior of PVCL aqueous solution. The impact of ILs on the phase transition behavior of PVCL was monitored by using UV-visible absorption spectra, steady-state fluorescence spectroscopy, thermal fluorescence spectroscopy, and temperature dependent dynamic light scattering. Results showed significant changes in the absorbance, molecular interactions, agglomeration, and coil to globule transition behaviors of PVCL in the presence of two ILs. PVCL aqueous solution showed significant conformational changes after the addition of ILs.
Collapse
Affiliation(s)
- Reddicherla Umapathi
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Krishan Kumar
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 22212, Republic of Korea
- Department
of Chemistry, University of Delhi, Delhi 110 007, India
| | - Seyed Majid Ghoreishian
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | | - So Young Park
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | |
Collapse
|
5
|
Buratti E, Tavagnacco L, Zanatta M, Chiessi E, Buoso S, Franco S, Ruzicka B, Angelini R, Orecchini A, Bertoldo M, Zaccarelli E. The role of polymer structure on water confinement in poly(N-isopropylacrylamide) dispersions. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Rosi BP, D’Angelo A, Buratti E, Zanatta M, Tavagnacco L, Natali F, Zamponi M, Noferini D, Corezzi S, Zaccarelli E, Comez L, Sacchetti F, Paciaroni A, Petrillo C, Orecchini A. Impact of the Environment on the PNIPAM Dynamical Transition Probed by Elastic Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benedetta P. Rosi
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Arianna D’Angelo
- Laboratoire de Physique des Solides, CNRS, Université Paris-Saclay, 510 Rue André Rivière, 91405 Orsay, France
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Elena Buratti
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Marco Zanatta
- Dipartimento di Fisica, Università di Trento, via Sommarive 14, 38123 Trento, Italy
| | - Letizia Tavagnacco
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Francesca Natali
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
- CNR-IOM, OGG, 71 Avenue des Martyrs, 38043 Grenoble, Cedex 9, France
| | - Michaela Zamponi
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Daria Noferini
- Jülich Centre for Neutron Science at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
- European Spallation Source ERIC, Box 176, 221 00 Lund, Sweden
| | - Silvia Corezzi
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Emanuela Zaccarelli
- Dipartimento di Fisica, CNR-ISC c/o Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Lucia Comez
- Dipartimento di Fisica e Geologia, CNR-IOM c/o Università di Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| | - Francesco Sacchetti
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
| | - Andrea Orecchini
- Dipartimento di Fisica e Geologia, Università di Perugia, Via Alessandro Pascoli, 06123 Perugia, Italy
- Dipartimento di Fisica e Geologia, CNR-IOM c/o Università di Perugia, via Alessandro Pascoli, 06123 Perugia, Italy
| |
Collapse
|
7
|
Tavagnacco L, Zaccarelli E, Chiessi E. Modeling Solution Behavior of Poly( N-isopropylacrylamide): A Comparison between Water Models. J Phys Chem B 2022; 126:3778-3788. [PMID: 35491838 PMCID: PMC9150113 DOI: 10.1021/acs.jpcb.2c00637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Water is known to
play a fundamental role in determining the structure
and functionality of macromolecules. The same crucial contribution
is also found in the in silico description of polymer aqueous solutions.
In this work, we exploit the widely investigated synthetic polymer
poly(N-isopropylacrylamide) (PNIPAM) to understand
the effect of the adopted water model on its solution behavior and
to refine the computational setup. By means of atomistic molecular
dynamics simulations, we perform a comparative study of PNIPAM aqueous
solution using two advanced water models: TIP4P/2005 and TIP4P/Ice.
The conformation and hydration features of an atactic 30-mer at infinite
dilution are probed at a range of temperature and pressure suitable
to detect the coil-to-globule transition and to map the P–T
phase diagram. Although both water models can reproduce the temperature-induced
coil-to-globule transition at atmospheric pressure and the polymer
hydration enhancement that occurs with increasing pressure, the PNIPAM–TIP4P/Ice
solution shows better agreement with experimental findings. This result
can be attributed to a stronger interaction of TIP4P/Ice water with
both hydrophilic and hydrophobic groups of PNIPAM, as well as to a
less favorable contribution of the solvent entropy to the coil-to-globule
transition.
Collapse
Affiliation(s)
- Letizia Tavagnacco
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A, Moro 2, Rome 00185, Italy
| | - Emanuela Zaccarelli
- CNR-ISC and Department of Physics, Sapienza University of Rome, Piazzale A, Moro 2, Rome 00185, Italy
| | - Ester Chiessi
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica I, Rome 00133, Italy
| |
Collapse
|
8
|
Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Huh YS, Venkatesu P. Interactions between a biomedical thermoresponsive polymer and imidazolium-based ionic liquids: A comprehensive biophysical investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
Corezzi S, Bracco B, Sassi P, Paolantoni M, Comez L. Protein Hydration in a Bioprotecting Mixture. Life (Basel) 2021; 11:life11100995. [PMID: 34685367 PMCID: PMC8537178 DOI: 10.3390/life11100995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
We combined broad-band depolarized light scattering and infrared spectroscopies to study the properties of hydration water in a lysozyme-trehalose aqueous solution, where trehalose is present above the concentration threshold (30% in weight) relevant for biopreservation. The joint use of the two different techniques, which were sensitive to inter-and intra-molecular degrees of freedom, shed new light on the molecular mechanism underlying the interaction between the three species in the mixture. Thanks to the comparison with the binary solution cases, we were able to show that, under the investigated conditions, the protein, through preferential hydration, remains strongly hydrated even in the ternary mixture. This supported the water entrapment scenario, for which a certain amount of water between protein and sugar protects the biomolecule from damage caused by external agents.
Collapse
Affiliation(s)
- Silvia Corezzi
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia, Italy;
| | - Brenda Bracco
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy; (B.B.); (P.S.)
| | - Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy; (B.B.); (P.S.)
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, 06123 Perugia, Italy; (B.B.); (P.S.)
- Correspondence: (M.P.); (L.C.)
| | - Lucia Comez
- CNR-IOM at Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, 06123 Perugia, Italy
- Correspondence: (M.P.); (L.C.)
| |
Collapse
|