1
|
Zhang L, Shen Y, Zhang T, Jiang X, Wang L, Wang B, Lan X, Tian J, Zhang X. pH responsive and zwitterionic micelle for enhanced cellular uptake and antitumor performance. BIOMATERIALS ADVANCES 2024; 167:214082. [PMID: 39486242 DOI: 10.1016/j.bioadv.2024.214082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The side effects of small molecule chemotherapeutic drugs (SMCD) have brought great pain to the cancer patients. Many nanodrug carriers can relieve the shortcomings of SMCD, but they have complex synthesis processes and lack biodegradability. To overcome both problems, we synthesized a pH responsive biodegradable zwitterionic molecules (EK-D) by linking zwitterionic polypeptide (EK7) and dodecyl acrylate through a simple click reaction. Subsequently, doxorubicin (DOX) was physically encapsulated within the EK-D micelles to produce EK-D-DOX micelles, and polyethylene glycol monooleate (POO) employed as a comparative group for the preparation of POO-DOX micelles. The results show that EK-D-DOX micelles have good aqueous stability and anti-protein non-specific adsorption performance at pH 7.4, but EK-D-DOX micelles aggregate under the condition of pH = 5.5 due to the biodegradability of EK-D. The tumor cell uptake rate of EK-D-DOX micelles is higher than that of POO-DOX micelles and free DOX, which makes EK-D-DOX micelles the highest cytotoxic. Additionally, EK-D-DOX micelles release more DOX in a slightly acidic environment than at pH 7.4, and the release of DOX reaches a significant cumulative value of 75.20 % under pH conditions of 5.5. More importantly, EK-D-DOX micelles exhibit superior in vivo tumor inhibitory efficacy compared to free DOX, resulting in a remarkable tumor inhibition rate of 95.7 %. EK-D-DOX micelles not only have lower biological toxicity to normal tissues than free DOX, but also have a longer blood circulation time in mice. The method of EK-D-DOX micelles preparation represents a new method to prepare biodegradable zwitterionic nanodrug.
Collapse
Affiliation(s)
- Lu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Yue Shen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Tiantian Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Xiaohua Jiang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Longgang Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| | - Bin Wang
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China
| | - Xifa Lan
- First Hospital of Qinhuangdao, Qinhuangdao, China.
| | - Jingrui Tian
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063210, China.
| | - Xiaoyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
2
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
3
|
On the role played by hydrogen bonding between water soluble polyacids and surfactants on their micellization as a function of pH. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
4
|
Tagliabue A, Micheletti C, Mella M. Tuning Knotted Copolyelectrolyte Conformations via Solution Properties. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100Como, Italy
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136Trieste, Italy
| | - Cristian Micheletti
- SISSA (Scuola Internazionale Superiore di Studi Avanzati), via Bonomea 265, 34136Trieste, Italy
| | - Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100Como, Italy
| |
Collapse
|
5
|
Cocamidopropyl betaine can behave as a cationic surfactant and electrostatically associate with polyacids of high molecular weight. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Ye M, Zhang H, Wu Z, Ding C, Jin Z, Wang F, Bian H. Supercritical carbon dioxide microemulsion stabilized with zwitterionic surfactant: A dissipative particle dynamics simulation study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Interaction between surfaces decorated with like-charged pendants: Unravelling the interplay between energy and entropy leading to attraction. J Colloid Interface Sci 2022; 619:51-64. [DOI: 10.1016/j.jcis.2022.03.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
|
10
|
Mella M, Tagliabue A. Impact of Chemically Specific Interactions between Anions and Weak Polyacids on Chain Ionization, Conformations, and Solution Energetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Massimo Mella
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (I), Italy
| | - Andrea Tagliabue
- Dipartimento di Scienza ed Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como (I), Italy
| |
Collapse
|