1
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
2
|
Hu D, Li T, Bian H, Liu H, Wang P, Wang Y, Sun J. Silk films with distinct surface topography modulate plasma membrane curvature to polarize macrophages. Mater Today Bio 2024; 28:101193. [PMID: 39221204 PMCID: PMC11364906 DOI: 10.1016/j.mtbio.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The physical properties of a biomaterial play a vital role in modulating macrophage polarization. However, discerning the specific effects of individual parameters can be intricate due to their interdependencies, limiting the mechanism underlying a specific parameter on the polarization of macrophages. Here, we engineered silk fibroin (SF) films with tunable surface roughness while maintaining similar physical properties by combining casting and salting out techniques. We demonstrate that increased surface roughness in SF films promotes M2-like macrophage polarization, characterized by enhanced secretion of anti-inflammatory cytokines. Transcriptomic analysis unveils the modulation of genes associated with extracellular matrix-cell interactions, highlighting the role of surface topography in regulating cellular processes. Mechanistically, we show that surface roughness induces macrophage membrane curvature, facilitating integrin αv endocytosis and thereby inhibiting the integrin-NF-kB signaling pathway. In vivo implantation assays corroborate that rough SF films substantially mitigate early inflammatory responses. This work establishes a direct link between surface roughness and intracellular signaling in macrophages, adding to our understanding of the biomaterial surface effect at the material-cell interface and bringing insights into material design.
Collapse
Affiliation(s)
- Doudou Hu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Tiandong Li
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Haixu Bian
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haiyu Liu
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Pengwei Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yeyuan Wang
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jingchen Sun
- Subtropical Sericulture and Mulberry Resources Protection and Safety Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
3
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
4
|
Zhou W, Liu Y, Dong J, Hu X, Su Z, Zhang X, Zhu C, Xiong L, Huang W, Bai J. Mussel-Derived and Bioclickable Peptide Mimic for Enhanced Interfacial Osseointegration via Synergistic Immunomodulation and Vascularized Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401833. [PMID: 38922775 PMCID: PMC11348244 DOI: 10.1002/advs.202401833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Indexed: 06/28/2024]
Abstract
Inadequate osseointegration at the interface is a key factor in orthopedic implant failure. Mechanistically, traditional orthopedic implant interfaces fail to precisely match natural bone regeneration processes in vivo. In this study, a novel biomimetic coating on titanium substrates (DPA-Co/GFO) through a mussel adhesion-mediated ion coordination and molecular clicking strategy is engineered. In vivo and in vitro results confirm that the coating exhibits excellent biocompatibility and effectively promotes angiogenesis and osteogenesis. Crucially, the biomimetic coating targets the integrin α2β1 receptor to promote M2 macrophage polarization and achieves a synergistic effect between immunomodulation and vascularized bone regeneration, thereby maximizing osseointegration at the interface. Mechanical push-out tests reveal that the pull-out strength in the DPA-Co/GFO group is markedly greater than that in the control group (79.04 ± 3.20 N vs 31.47 ± 1.87 N, P < 0.01) and even surpasses that in the sham group (79.04 ± 3.20 N vs 63.09 ± 8.52 N, P < 0.01). In summary, the novel biomimetic coating developed in this study precisely matches the natural process of bone regeneration in vivo, enhancing interface-related osseointegration and showing considerable potential for clinical translation and applications.
Collapse
Affiliation(s)
- Wei Zhou
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Yang Liu
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Jiale Dong
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Xianli Hu
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Zheng Su
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Xianzuo Zhang
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Chen Zhu
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Liming Xiong
- Department of OrthopaedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wei Huang
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| | - Jiaxiang Bai
- Department of OrthopaedicsThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230022China
| |
Collapse
|
5
|
Yang J, Gong X, Li T, Xia Z, He R, Song X, Wang X, Wu J, Chen J, Wang F, Xiong R, Lin Y, Chen G, Yang L, Cai K. Tantalum Particles Promote M2 Macrophage Polarization and Regulate Local Bone Metabolism via Macrophage-Derived Exosomes Influencing the Fates of BMSCs. Adv Healthc Mater 2024; 13:e2303814. [PMID: 38497832 DOI: 10.1002/adhm.202303814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Indexed: 03/19/2024]
Abstract
In this study, the regulatory role and mechanisms of tantalum (Ta) particles in the bone tissue microenvironment are explored. Ta particle deposition occurs in both clinical samples and animal tissues following porous Ta implantation. Unlike titanium (Ti) particles promoting M1 macrophage (Mϕ) polarization, Ta particles regulating calcium signaling pathways and promoting M2 Mϕ polarization. Ta-induced M2 Mϕ enhances bone marrow-derived mesenchymal stem cells (BMSCs) proliferation, migration, and osteogenic differentiation through exosomes (Exo) by upregulating miR-378a-3p/miR-221-5p and downregulating miR-155-5p/miR-212-5p. Ta particles suppress the pro-inflammatory and bone resorption effects of Ti particles in vivo and in vitro. In a rat femoral condyle bone defect model, artificial bone loaded with Ta particles promotes endogenous Mϕ polarization toward M2 differentiation at the defect site, accelerating bone repair. In conclusion, Ta particles modulate Mϕ polarization toward M2 and influence BMSCs osteogenic capacity through Exo secreted by M2 Mϕ, providing insights for potential bone repair applications.
Collapse
Affiliation(s)
- Junjun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyuan Gong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Rui He
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiongbo Song
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xin Wang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Jiangyi Wu
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jiajia Chen
- Center of Biomedical Analysis, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Fangzheng Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Ran Xiong
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yangjing Lin
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Guangxing Chen
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Liu Yang
- Center for Joint Surgery, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
6
|
Arnosa-Prieto Á, Diaz-Rodriguez P, González-Gómez MA, García-Acevedo P, de Castro-Alves L, Piñeiro Y, Rivas J. Magnetic-driven Interleukin-4 internalization promotes magnetic nanoparticle morphology and size-dependent macrophage polarization. J Colloid Interface Sci 2024; 655:286-295. [PMID: 37944376 DOI: 10.1016/j.jcis.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Macrophages are known to depict two major phenotypes: classically activated macrophages (M1), associated with high production of pro-inflammatory cytokines, and alternatively activated macrophages (M2), which present an anti-inflammatory function. A precise control over M1-M2 polarization is a promising strategy in therapeutics to modulate both tissue regeneration and tumor progression processes. However, this is not a simple task as macrophages behave differently depending on the microenvironment. In agreement with this, non-consistent data have been reported regarding macrophages response to magnetic iron oxide nanoparticles (MNPs). To investigate the impact of both tissue microenvironment and MNPs properties on the obtained macrophage responses, single-core (SC) and multi-core (MC) citrate coated MNPs, are synthesized and, afterwards, loaded with a macrophage polarization trigger, IL-4. The developed MNPs are then tested in macrophages subjected to different stimuli. We demonstrate that macrophages treated with low concentrations of MNPs behave differently depending on the polarization stage independently of the concentration of iron. Moreover, we find out that MNPs size and morphology determines the effect of the IL-4 loaded MNPs on M1 macrophages, since IL-4 loaded SC MNPs favor the polarization of M1 macrophages towards M2 phenotype, while IL-4 loaded MC MNPs further stimulate the secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Ángela Arnosa-Prieto
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain.
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Grupo I+D Farma (GI-1645), Instituto de Materiales (iMATUS), Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain.
| | - Manuel A González-Gómez
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Pelayo García-Acevedo
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Lisandra de Castro-Alves
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - Yolanda Piñeiro
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| | - José Rivas
- NANOMAG Laboratory, Applied Physics Department, Materials Institute (iMATUS) and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela 15706, Spain
| |
Collapse
|
7
|
Ma T, Chen S, Wang J, Liang S, Chen M, Liu Q, Zhang Z, Liu G, Yang Y, Hu Y, Xie J. Enhanced Osteolysis Targeted Therapy through Fusion of Exosomes Derived from M2 Macrophages and Bone Marrow Mesenchymal Stem Cells: Modulating Macrophage Polarization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303506. [PMID: 37806770 DOI: 10.1002/smll.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/30/2023] [Indexed: 10/10/2023]
Abstract
Aseptic loosening of prostheses is a highly researched topic, and wear particle-induced macrophage polarization is a significant cause of peri-prosthetic osteolysis. Exosomes derived from bone marrow mesenchymal stem cells (BMSCs-Exos) promote M2 polarization and inhibit M1 polarization of macrophages. However, clinical application problems such as easy clearance and lack of targeting exist. Exosomes derived from M2 macrophages (M2-Exos) have good biocompatibility, immune escape ability, and natural inflammatory targeting ability. M2-Exos and BMSCs-Exos fused exosomes (M2-BMSCs-Exos) are constructed, which targeted the osteolysis site and exerted the therapeutic effect of both exosomes. M2-BMSCs-Exos achieved targeted osteolysis after intravenous administration inhibiting M1 polarization and promoting M2 polarization to a greater extent at the targeted site, ultimately playing a key role in the prevention and treatment of aseptic loosening of prostheses. In conclusion, M2-BMSCs-Exos can be used as a precise and reliable molecular drug for peri-prosthetic osteolysis. Fused exosomes M2-BMSCs-Exos were originally proposed and successfully prepared, and exosome fusion technology provides a new theoretical basis and solution for the clinical application of therapeutic exosomes.
Collapse
Affiliation(s)
- Tianliang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410012, China
| | - Jiahao Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Shuailong Liang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Mingyu Chen
- Department of Ultrasound Diagnosis, Second Xiangya Hospital, Central South University, Changsha, 410012, China
| | - Qimeng Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zheyu Zhang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Guanzhi Liu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yute Yang
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yihe Hu
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jie Xie
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
8
|
Li Y, Li X, Guo D, Meng L, Feng X, Zhang Y, Pan S. Immune dysregulation and macrophage polarization in peri-implantitis. Front Bioeng Biotechnol 2024; 12:1291880. [PMID: 38347915 PMCID: PMC10859439 DOI: 10.3389/fbioe.2024.1291880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
The term "peri-implantitis" (peri-implantitis) refers to an inflammatory lesion of the mucosa surrounding an endosseous implant and a progressive loss of the peri-implant bone that supports the implant. Recently, it has been suggested that the increased sensitivity of implants to infection and the quick elimination of supporting tissue after infection may be caused by a dysregulated peri-implant mucosal immune response. Macrophages are polarized in response to environmental signals and play multiple roles in peri-implantitis. In peri-implantitis lesion samples, recent investigations have discovered a considerable increase in M1 type macrophages, with M1 type macrophages contributing to the pro-inflammatory response brought on by bacteria, whereas M2 type macrophages contribute to inflammation remission and tissue repair. In an effort to better understand the pathogenesis of peri-implantitis and suggest potential immunomodulatory treatments for peri-implantitis in the direction of macrophage polarization patterns, this review summarizes the research findings related to macrophage polarization in peri-implantitis and compares them with periodontitis.
Collapse
Affiliation(s)
- Yue Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xue Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Danni Guo
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Lingwei Meng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Xianghui Feng
- Department of Periodontology, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yi Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shaoxia Pan
- Department of Prosthodontics, Peking University School and Hospital of Stomatology and National Center for Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Research Center of Oral Biomaterials and Digital Medical Devices and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
9
|
Pawłowski Ł, Bartmański M, Ronowska A, Banach-Kopeć A, Mania S, Cieślik BM, Mielewczyk-Gryń A, Karczewski J, Zieliński A. Cytocompatibility, antibacterial, and corrosion properties of chitosan/polymethacrylates and chitosan/poly(4-vinylpyridine) smart coatings, electrophoretically deposited on nanosilver-decorated titania nanotubes. J Biomed Mater Res B Appl Biomater 2024; 112:e35332. [PMID: 37728122 DOI: 10.1002/jbm.b.35332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
The development of novel implants subjected to surface modification to achieve high osteointegration properties at simultaneous antimicrobial activity is a highly current problem. This study involved different surface treatments of titanium surface, mainly by electrochemical oxidation to produce a nanotubular oxide layer (TNTs), a subsequent electrochemical reduction of silver nitrate and decoration of a nanotubular surface with silver nanoparticles (AgNPs), and finally electrophoretic deposition (EPD) of a composite of chitosan (CS) and either polymethacrylate-based copolymer Eudragit E 100 (EE100) or poly(4-vinylpyridine) (P4VP) coating. The effects of each stage of this multi-step modification were examined in terms of morphology, roughness, wettability, corrosion resistance, coating-substrate adhesion, antibacterial properties, and osteoblast cell adhesion and proliferation. The results showed that the titanium surface formed nanotubes (inner diameter of 97 ± 12 nm, length of 342 ± 36 nm) subsequently covered with silver nanoparticles (with a diameter of 88 ± 8 nm). Further, the silver-decorated nanotubes were tightly coated with biopolymer films. Most of the applied modifications increased both the roughness and the surface contact angle of the samples. The deposition of biopolymer coatings resulted in reduced burst release of silver. The coated samples revealed potent antimicrobial activity against both Gram-positive and Gram-negative bacteria. Total elimination (99.9%) of E. coli was recorded for a sample with CS/P4VP coating. Cytotoxicity results using hFOB 1.19, a human osteoblast cell line, showed that after 3 days the tested modifications did not affect the cellular growth according to the titanium control. The proposed innovative multilayer antibacterial coatings can be successful for titanium implants as effective postoperative anti-inflammation protection.
Collapse
Affiliation(s)
- Łukasz Pawłowski
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland
| | - Michał Bartmański
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Adrianna Banach-Kopeć
- Department of Chemistry, Technology, and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Szymon Mania
- Department of Chemistry, Technology, and Biotechnology of Food, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Bartłomiej Michał Cieślik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Gdańsk, Poland
| | - Aleksandra Mielewczyk-Gryń
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, Gdańsk, Poland
| | - Jakub Karczewski
- Institute of Nanotechnology and Materials Engineering, Faculty of Applied Physics and Mathematics, and Advanced Materials Centre, Gdańsk University of Technology, Gdańsk, Poland
| | - Andrzej Zieliński
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
10
|
Luss A, Kushnerev K, Vlaskina E, Vanyushenkova A, Mezhuev YO, Krivoborodov E, Toropygin I, Gavryushenko N, Vetrile M, Zaitsev V, Dyatlov V. Gel Based on Hydroxyethyl Starch with Immobilized Amikacin for Coating of Bone Matrices in Experimental Osteomyelitis Treatment. Biomacromolecules 2023; 24:5666-5677. [PMID: 37953507 DOI: 10.1021/acs.biomac.3c00653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
A polysaccharide gel containing covalently bound amikacin, a broad-spectrum antibiotic, was produced by using epichlorohydrin-activated hydroxyethyl starch (HES). The structure of the polymers was analyzed by 13C and 1H nuclear magnetic resonance (13C NMR and 1H NMR) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The sites of covalent attachment of amikacin to the epoxypropyl substituent and the HES backbone were determined. The antibacterial activity of the polymer was evaluated in vitro using the agar well diffusion method with the Staphylococcus aureus P209 strain. It was demonstrated that the polymer retained activity in the presence of bacterial amylase, which is released upon bacterial attack. The gel was applied for coating pores and surfaces of a biocomposite material based on a xenogenic bovine bone matrix. In vivo experiments showed the effectiveness of utilizing amikacin-containing biocomposite bone-substitute materials in the treatment of experimental osteomyelitis in rats using objective histological control and X-ray tomography.
Collapse
Affiliation(s)
- Anna Luss
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow 119121, Russia
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Kirill Kushnerev
- Centre for Strategic Planning and Management of Biomedical Health Risks of the Federal Medical Biological Agency, Moscow 119121, Russia
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Elizaveta Vlaskina
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Anna Vanyushenkova
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Yaroslav O Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow 119334, Russia
| | - Efrem Krivoborodov
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
| | - Ilya Toropygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Russian Academy of Science, Moscow 119121, Russia
| | - Nikolai Gavryushenko
- N. N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of Russia, Moscow 115478, Russia
| | - Marchel Vetrile
- N. N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of Russia, Moscow 115478, Russia
| | - Vladimir Zaitsev
- N. N. Priorov National Medical Research Center for Traumatology and Orthopedics, Ministry of Health of Russia, Moscow 115478, Russia
| | - Valerie Dyatlov
- Mendeleev University of Chemical Technology of Russia, Moscow 125047, Russia
- MIREA-RTU-Lomonosov Institute of Fine Chemical Technologies, Moscow 119571, Russia
| |
Collapse
|
11
|
Chen L, Tong Z, Luo H, Qu Y, Gu X, Si M. Titanium particles in peri-implantitis: distribution, pathogenesis and prospects. Int J Oral Sci 2023; 15:49. [PMID: 37996420 PMCID: PMC10667540 DOI: 10.1038/s41368-023-00256-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023] Open
Abstract
Peri-implantitis is one of the most important biological complications in the field of oral implantology. Identifying the causative factors of peri-implant inflammation and osteolysis is crucial for the disease's prevention and treatment. The underlying risk factors and detailed pathogenesis of peri-implantitis remain to be elucidated. Titanium-based implants as the most widely used implant inevitably release titanium particles into the surrounding tissue. Notably, the concentration of titanium particles increases significantly at peri-implantitis sites, suggesting titanium particles as a potential risk factor for the condition. Previous studies have indicated that titanium particles can induce peripheral osteolysis and foster the development of aseptic osteoarthritis in orthopedic joint replacement. However, it remains unconfirmed whether this phenomenon also triggers inflammation and bone resorption in peri-implant tissues. This review summarizes the distribution of titanium particles around the implant, the potential roles in peri-implantitis and the prevalent prevention strategies, which expects to provide new directions for the study of the pathogenesis and treatment of peri-implantitis.
Collapse
Affiliation(s)
- Long Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zian Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Hongke Luo
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Yuan Qu
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, China
| | - Xinhua Gu
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Misi Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Shi X, Wang Z, Guo M, Wang Y, Bi Z, Li D, Zhang P, Liu J. PRP coating on different modified surfaces promoting the osteointegration of polyetheretherketone implant. Front Bioeng Biotechnol 2023; 11:1283526. [PMID: 38026857 PMCID: PMC10655129 DOI: 10.3389/fbioe.2023.1283526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: Polyetheretherketone (PEEK) material implants have been applied more and more clinically recently. In order to increase the osteogenic activity of PEEK material, the microstructure change of the material surface and the construction of functional microcoatings have become a hot research topic. This study investigated the ability of PEEK surfaces modified by different methods to carry Platelet-rich plasma (PRP) and the osteogenic ability of different PEEK microstructures after carrying PRP in vivo/in vitro. Methods: In this study, PEEK surfaces were modified by sulfuric acid, gaseous sulfur trioxide and sandpaper. Next, PRP from SD rats was prepared and incubated on PEEK material with different surface microstructures. Lactate dehydrogenase test, scanning electron microscope and Elisa assay was used to evaluate adhesion efficiency of PRP. Then in vitro tests such as CCK-8, ALP staining, ARS staining and RT-qPCR et al were used to further evaluate osteogenesis ability of the PRP coating on PEEK surface. Finally, The tibia defects of SD rats were established, and the new bone was evaluated by Micro-CT, HE staining, and immunofluorescence staining. Results: The sandpaper-polished PEEK with the strongest PRP carrying capacity showed the best osteogenesis. Our study found that the modified PEEK surface with PRP coating has excellent osteogenic ability and provided the basis for the interface selection of PRP for the further application of PEEK materials. Discussion: Among the three PEEK modified surfaces, due to the most PRP carrying and the strongest osteogenic ability in vitro/vivo, the frosted surface was considered to be the most suitable surface for the preparation of PRP coating.
Collapse
Affiliation(s)
- Xiaotong Shi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Zongliang Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Min Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yu Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiguo Bi
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Dongsong Li
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| | - Peibiao Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Jianguo Liu
- Department of Orthopedic Surgery, The First Hospital of Jilin Uniersity, Changchun, China
| |
Collapse
|
13
|
Alkhodary MA. Effect of controlled surface roughness and biomimetic coating on titanium implants adhesion to the bone: An experiment animal study. Saudi Dent J 2023; 35:819-826. [PMID: 38025594 PMCID: PMC10658383 DOI: 10.1016/j.sdentj.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Laser micromachining of titanium and its alloys can create micro-grooves with sizes similar to cell diameter of about 10 μm. Its coating with arginine-glycine-aspartic acid (RGD) may enhance cellular spreading and adhesion. This study aimed to evaluate the effect of laser micro-grooving and laser micro-grooving combined with RGD coating on the strength of the dental implants/bone interface using destructive mechanical pullout testing in experimental animals. Materials and methods In this study, the test groups consisted of 1.5-mm diameter, 5-mm long laser-grooved and laser-grooved/RGD coated titanium alloy (Ti-6Al-4 V) rods, and the control group included plain titanium alloy (Ti-6Al-4 V) rods. These rods were implanted in the mandibles of New Zealand white rabbits for 2, 4, and 6 weeks. After sacrifice, the test and control specimens were retrieved for mechanical pullout testing. The DMA 7-e was used to pull the titanium rods out of the bone, the probe position was plotted versus time graph to monitor the test progression, and the static modulus versus time graph was viewed; such graphs was then transformed into tables. The results were analyzed using the Mann-Whitney test. Results The laser-grooved/RGD coated rods had significantly higher pull-out strength than the laser-grooved and control rods. Additionally, the laser-grooved rods had significantly higher pull-out strength than control rods. Conclusion Two novel surface treatments were used: laser micro-grooving and tri peptide RGD coating, both of which had different effects on the dental implant interface. Laser grooving improved peri-implant bone healing, whereas RGD coating facilitated earlier bone-implant adhesion and better mineralization.
Collapse
Affiliation(s)
- Mohamed Ahmed Alkhodary
- Corresponding author at: Department of Prosthetic Dental Sciences, College of Dentistry, Qassim University, P.O. Box 6700, Burydah 51452, Saudi Arabia.
| |
Collapse
|
14
|
Chen LW, Jin SH, Lu Q, Zhou JG, Liu JG, Guan XY, Xia HB, He H. Identification of immunological bioprocesses involved in peri-implantitis using weighted gene co-expression network analysis. J Periodontol 2023; 94:1078-1089. [PMID: 37032448 DOI: 10.1002/jper.22-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/04/2023] [Accepted: 03/18/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND Peri-implantitis is an irreversible infectious disease that occurs with high incidence. Exploring the immune responses of peri-implantitis is key to developing targeted treatment strategies. However, there is limited research on the immune response of peri-implantitis. METHODS This study performed a weighted gene co-expression network analysis to identify the peri-implantitis related gene network and conducted a functional enrichment analysis of the gene network. Thereafter, the candidate hub genes were selected by constructing a protein-protein interaction network and drawing an upset plot. The hub genes were identified through their significant associations with disease condition and validated using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. Using the gene set variation analysis, the hub genes were further used to explore infiltrating immunocytes and immune factors in peri-implantitis. Finally, the immunocytes and immune factor related hub genes were intersected to obtain the therapeutic target, which was validated using histological staining. RESULTS The peri-implantitis related gene network was enriched in innate and adaptive immune response. Subsequently, interleukin (IL)1B, IL10, ITGAM, ITGB1, STAT3, and TLR4 were identified as hub genes. Plasmacytoid dendritic cells, macrophages, myeloid-derived suppressor cells, natural killer T cells, and immature B cells were positively and significantly related to the hub genes IL1B, TLR4, ITGAM, and ITGB1 (correlation coefficient > 0.80). While immune factors CXCL10, IL6, and CXCL12 and hub genes IL10 and IL1B held the highest degree in the immune factors network. IL1B may be a promising therapeutic target. CONCLUSION This study provides new insights into the hub genes, immunocytes, and immune factors underlying peri-implantitis immunological bioprocess.
Collapse
Affiliation(s)
- Liang-Wen Chen
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Su-Han Jin
- Department of Orthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Qian Lu
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Guo Zhou
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Guo Liu
- School of Stomatology, Special Key Laboratory of Oral Diseases Research, Higher Education Institution, Zunyi Medical University, Zunyi, China
| | - Xiao-Yan Guan
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Hai-Bin Xia
- Hubei-MOST KLOS & KLOBM, Department of Oral Implantology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hong He
- Department of Orthodontics, Hubei-MOST KLOS & KLOBM, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
16
|
Álvarez-López A, Rubio RT, Hernández-Escobar S, Daza R, Colchero L, Rezvanian P, Elices M, Guinea GV, González-Nieto D, Pérez-Rigueiro J. Application of single cell force spectroscopy (SCFS) to the assessment of cell adhesion to peptide-decorated surfaces. Int J Biol Macromol 2023; 244:125369. [PMID: 37321435 DOI: 10.1016/j.ijbiomac.2023.125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
The adhesion forces of cells to peptide-coated functionalized materials were assessed through the Single Cell Force Spectroscopy (SCFS) technique in order to develop a methodology that allows the fast selection of peptide motifs that favor the interaction between cells and the biomaterial. Borosilicate glasses were functionalized using the activated vapor silanization process (AVS) and subsequently decorated with an RGD- containing peptide using the EDC/NHS crosslinking chemistry. It is shown that the RGD-coated glass induces larger attachment forces on mesenchymal stem cell cultures (MSCs), compared to the bare glass substrates. These higher forces correlate well with the enhanced adhesion of the MSCs observed on RGD-coated substrates through conventional adhesion cell cultures and inverse centrifugation tests. The methodology based on the SCFS technique presented in this work constitutes a fast procedure for the screening of new peptides or their combinations to select candidates that may enhance the response of the organism to the implant of the functionalized biomaterials.
Collapse
Affiliation(s)
- Aroa Álvarez-López
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Raquel Tabraue Rubio
- Bioactive Surfaces S.L, C/ Puerto de Navacerrada 18, 28260 Galapagar (Madrid), Spain)
| | - Sandra Hernández-Escobar
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Rafael Daza
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Luis Colchero
- Bioactive Surfaces S.L, C/ Puerto de Navacerrada 18, 28260 Galapagar (Madrid), Spain)
| | - Parsa Rezvanian
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Manuel Elices
- Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Gustavo V Guinea
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof, Martín Lagos s/n., 28040 Madrid, Spain
| | - Daniel González-Nieto
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain; Bioactive Surfaces S.L, C/ Puerto de Navacerrada 18, 28260 Galapagar (Madrid), Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Departamento de Tecnología Fotónica y Bioingeniería, ETSI Telecomunicaciones, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - José Pérez-Rigueiro
- Center for Biomedical Technology, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón (Madrid), Spain; Departamento de Ciencia de Materiales, ETSI Caminos, Canales y Puertos, Universidad Politécnica de Madrid, 28040 Madrid, Spain; Bioactive Surfaces S.L, C/ Puerto de Navacerrada 18, 28260 Galapagar (Madrid), Spain); Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Calle Prof, Martín Lagos s/n., 28040 Madrid, Spain.
| |
Collapse
|
17
|
Magnetic liposome as a dual-targeting delivery system for idiopathic pulmonary fibrosis treatment. J Colloid Interface Sci 2023; 636:388-400. [PMID: 36640550 DOI: 10.1016/j.jcis.2023.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common form of idiopathic interstitial pneumonia, where M2 macrophages play an irreplaceable role in the anti-inflammatory progress. Targeting M2 macrophages and regulating their polarization may be a potential treatment strategy for IPF. Herein, we designed a magnetic liposome based dual-targeting delivery system for the IPF treatment, constructed by mannose-modified magnetic nanoparticles (MAN-MNPs) loaded on the surface of the liposome (MAN-MNPs@LP). The delivery system is capable of responding to a static magnetic field (SMF) and then recognizing in situ of M2 macrophages through the mannose receptor-dependent internalization. Firstly, a series of physical and chemical assays were used to characterize these nanoparticles. Subsequently, magnetic liposomes accumulation in the damaged lung with/without mannose modification and SMF were compared by in vivo imaging system. Finally, the reduction of M2 macrophages and inhibition of their polarization confirmed that the development of IPF was retarded due to the in situ release of encapsulated dexamethasone (Dex) in lungs under the SMF. Further investigation demonstrated that the expression of α-SMA and collagen deposition was reduced. Altogether, this dual-targeting delivery system can effectively deliver Dex into M2 macrophages in the lung, making it a novel and promising therapeutic system for the IPF treatment.
Collapse
|
18
|
Wen Z, Shi X, Li X, Liu W, Liu Y, Zhang R, Yu Y, Su J. Mesoporous TiO 2 Coatings Regulate ZnO Nanoparticle Loading and Zn 2+ Release on Titanium Dental Implants for Sustained Osteogenic and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15235-15249. [PMID: 36926829 DOI: 10.1021/acsami.3c00812] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Two major issues are currently hindering the clinical practice of titanium dental implants for the lack of biological activities: immediate/early loading risks and peri-implantitis. To solve these issues, it is urgent to develop multifunctional implants modified with effective osteogenic and antibacterial properties. Zinc oxide nanoparticles (ZnO NPs) possess superior antibacterial activity; however, they can rapidly release Zn2+, causing cytotoxicity. In this study, a potential dental implant modification was creatively developed as ZnO nanoparticle-loaded mesoporous TiO2 coatings (nZnO/MTC-Ti) via the evaporation-induced self-assembly method (EISA) and one-step spin coating. The mesoporous TiO2 coatings (MTCs) regulated the synthesis and loading of ZnO NPs inside the nanosized pores. The synergistic effects of MTC and ZnO NPs on nZnO/MTC-Ti not only controlled the long-term steady-state release of Zn2+ but also optimized the charge distribution on the surface. Therefore, the cytotoxicity of ZnO NPs was resolved without triggering excessive reactive oxygen species (ROS). The increased extracellular Zn2+ further promoted a favorable intracellular zinc ion microenvironment through the modulation of zinc transporters (ZIP1 and ZnT1). Owing to that, the adhesion, proliferation, and osteogenic activity of bone mesenchymal stem cells (BMSCs) were improved. Additionally, nZnO/MTC-Ti inhibited the proliferation of oral pathogens (Pg and Aa) by inducing bacterial ROS production. For in vivo experiments, different implants were implanted into the alveolar fossa of Sprague-Dawley rats immediately after tooth extraction. The nZnO/MTC-Ti implants were found to possess a higher capability for enhancing bone regeneration, antibiosis, and osseointegration in vivo. These findings suggested the outstanding performance of nZnO/MTC-Ti implants in accelerating osseointegration and inhibiting bacterial infection, indicating a huge potential for solving immediate/early loading risks and peri-implantitis of dental implants.
Collapse
Affiliation(s)
- Zhuo Wen
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Xinyue Shi
- Institute of New Energy for Vehicles, Shanghai Key Laboratory for Development and Application of Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Xuejing Li
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Weicai Liu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Yukun Liu
- Institute of New Energy for Vehicles, Shanghai Key Laboratory for Development and Application of Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Renyuan Zhang
- Institute of New Energy for Vehicles, Shanghai Key Laboratory for Development and Application of Metallic Functional Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Yiqiang Yu
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| | - Jiansheng Su
- Department of Prosthodontics, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, P. R. China
| |
Collapse
|
19
|
Si Y, Liu H, Li M, Jiang X, Yu H, Sun D. An efficient metal-organic framework-based drug delivery platform for synergistic antibacterial activity and osteogenesis. J Colloid Interface Sci 2023; 640:521-539. [PMID: 36878070 DOI: 10.1016/j.jcis.2023.02.149] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Bone implants for clinical application should be endowed with antibacterial activity, biocompatibility, and even osteogenesis-promoting properties. In this work, metal-organic framework (MOF) based drug delivery platform was used to modify titanium implants for improved clinical applicability. Methyl Vanillate@Zeolitic Imidazolate Framework-8 (MV@ZIF-8) was immobilized on the polydopamine (PDA) modified titanium. The sustainable release of the Zn2+ and MV causes substantial oxidative damage to Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The increased reactive oxygen species (ROS) significantly up-regulates the expression of oxidative stress and DNA damage response genes. Meanwhile, the structural disruption of lipid membranes caused by the ROS, the damage caused by Zinc active sites and the damage accelerated by the MV are both involved in inhibiting bacterial proliferation. The up-regulated expression of the osteogenic-related genes and proteins indicated that the MV@ZIF-8 could effectively promote the osteogenic differentiation of the human bone mesenchymal stem cells (hBMSCs). RNA sequencing and Western blotting analysis revealed that the MV@ZIF-8 coating activates the canonical Wnt/β-catenin signaling pathway through the regulation of tumor necrosis factor (TNF) pathway, thereby promoting the osteogenic differentiation of the hBMSCs. This work demonstrates a promising application of the MOF-based drug delivery platform in bone tissue engineering.
Collapse
Affiliation(s)
- Yunhui Si
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China
| | - Huanyao Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou 510080, PR China
| | - Mengsha Li
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China; Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Hongying Yu
- School of Materials, Sun Yat-sen University, Shenzhen, 518107, PR China.
| | - Dongbai Sun
- School of Materials Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
20
|
Khodaei T, Schmitzer E, Suresh AP, Acharya AP. Immune response differences in degradable and non-degradable alloy implants. Bioact Mater 2022; 24:153-170. [PMID: 36606252 PMCID: PMC9793227 DOI: 10.1016/j.bioactmat.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Alloy based implants have made a great impact in the clinic and in preclinical research. Immune responses are one of the major causes of failure of these implants in the clinic. Although the immune responses toward non-degradable alloy implants are well documented, there is a poor understanding of the immune responses against degradable alloy implants. Recently, there have been several reports suggesting that degradable implants may develop substantial immune responses. This phenomenon needs to be further studied in detail to make the case for the degradable implants to be utilized in clinics. Herein, we review these new recent reports suggesting the role of innate and potentially adaptive immune cells in inducing immune responses against degradable implants. First, we discussed immune responses to allergen components of non-degradable implants to give a better overview on differences in the immune response between non-degradable and degradable implants. Furthermore, we also provide potential areas of research that can be undertaken that may shed light on the local and global immune responses that are generated in response to degradable implants.
Collapse
Affiliation(s)
- Taravat Khodaei
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | - Elizabeth Schmitzer
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA
| | | | - Abhinav P. Acharya
- Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA,Biological Design, Arizona State University, Tempe, AZ, 85281, USA,Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State, University, Tempe, AZ, 85281, USA,Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA,Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA,Corresponding author. Biomedical Engineering, School of Biological and Health System Engineering, Arizona State, University, Tempe, AZ, 85281, USA.
| |
Collapse
|
21
|
Si Y, Liu H, Yu H, Jiang X, Sun D. MOF-derived CuO@ZnO modified titanium implant for synergistic antibacterial ability, osteogenesis and angiogenesis. Colloids Surf B Biointerfaces 2022; 219:112840. [PMID: 36113223 DOI: 10.1016/j.colsurfb.2022.112840] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 12/17/2022]
Abstract
Surface modification of titanium implants with antibacterial, osteogenic and even angiogenic capabilities are essential to enhance their clinical applicability. Herein, metal-organic framework (MOF) derived CuO@ZnO composite was grafted onto the polydopamine (PDA) modified titanium alloy to achieve vascularized bone regeneration. The CuO@ZnO-coated titanium effectively inhibits the formation of bacterial biofilms and the sterilization rate of Staphylococcus aureus (S. aureus) reaches 99%. Benefitting from the intrinsic porous architecture of MOFs, the Zn2+ and Cu2+ could be controllably released to facilitate the production of excess intracellular reactive oxygen species (ROS) inside the bacteria, which ensures the excellent antibacterial performance of the composite coating. The CuO@ZnO-coated titanium also exhibits good cytocompatibility, effectively promotes the adhesion and proliferation of the human bone marrow mesenchymal stem cells (hBMSCs) and reduces the level of the cell apoptosis. The up-regulated expression of the osteogenesis-related genes and the superior extracellular matrix mineralization reveals that the CuO@ZnO coating possesses fantastic osteoinductive properties. In addition, the transwell and tube formation assays of the human umbilical vein endothelial cells (HUVECs) suggest the superior angiogenesis ability of the CuO@ZnO-coated titanium. The released Cu2+ stimulated the angiogenesis of the HUVECs in vitro by up-regulating the expression of the vascular endothelial growth factor (VEGF). These findings will provide new insight into the development of multifunctional titanium implants for clinical applications.
Collapse
Affiliation(s)
- Yunhui Si
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Huanyao Liu
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Hongying Yu
- School of Materials, Sun Yat-Sen University, Shenzhen 518107, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| | - Xuzhou Jiang
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, PR China.
| | - Dongbai Sun
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, PR China; National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, PR China; Innovation Group of Marine Engineering Materials and Corrosion Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, PR China.
| |
Collapse
|
22
|
Li Z, Yu Y, Zeng W, Ding F, Zhang D, Cheng W, Wang M, Chen H, Pan G, Mei L, Zeng X, Gao N. Mussel-Inspired Ligand Clicking and Ion Coordination on 2D Black Phosphorus for Cancer Multimodal Imaging and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201803. [PMID: 35616079 DOI: 10.1002/smll.202201803] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Indexed: 06/15/2023]
Abstract
As a promising 2D nanocarrier, the biggest challenge of bare black phosphorus nanosheets (BP NSs) lies in the inherent instability, while it can be improved by surface modification strategies to a great extent. Considering the existing infirm BP NSs surface modification strategies, A mussels-inspired strong adhesive biomimetic peptide with azide groups for surface modification to increase the stability of BP NSs is synthesized. The azide groups on the peptide can quickly and precisely bind to the targeting ligand through click chemistry, solving the problem of nonspecificity of secondary modification of other mussel-mimicking materials. Besides, a catechol-Gd3+ coordination network is further constructed for magnetic resonance imaging (MRI) and inducing intracellular endo/lysosome escape. The fabricated BP-DOX@Gd/(DOPA)4 -PEG-TL nanoplatform exhibits enhanced antitumor abilities through synergetic chemo/photothermal effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yongkang Yu
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Fan Ding
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Dan Zhang
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Wei Cheng
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Miao Wang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongzhong Chen
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Nansha Gao
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| |
Collapse
|
23
|
Immunoregulation and anti-metalloproteinase bioactive injectable polysalicylate matrixgel for efficiently treating osteoarthritis. Mater Today Bio 2022; 15:100277. [PMID: 35601894 PMCID: PMC9114689 DOI: 10.1016/j.mtbio.2022.100277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 01/03/2023]
Abstract
Current treatments of osteoarthritis, such as oral medication and intra-articular injections, only provided temporary relief from pain and achieved limited advance in inhibiting progression. The development of new treatments is hindered by the complicated and unclear pathological mechanisms. Oxidative stress and immune inflammation are believed to be the important factors in the induction and progression of osteoarthritis. Herein, this work presents a bioactive material strategy to treat osteoarthritis, based on the FPSOH matrixgel with robust anti-inflammatory activity through inhibiting the oxidative stress and nuclear factor kappa B signaling, preventing the metalloproteinase, as well as inducing M2 polarization of macrophage, thereby providing immune regulation of synovial macrophages and suppressing the progression of synovitis and osteoarthritis. In vivo experiments demonstrated that FPSOH hydrogel can prevent papain-induced osteoarthritis and its progression, and provide dual protection for cartilage and synovium, as compared with commercial sodium hyaluronate.
Collapse
|
24
|
Jia Q, Liu Y, Alimujiang A, Guo J, Chen D, Wang Y, Yusufu A, Ma C. Nine-year-long complex humeral nonunion salvaged by distraction osteogenesis technique: a case report and review of the literature. BMC Surg 2022; 22:77. [PMID: 35241038 PMCID: PMC8892714 DOI: 10.1186/s12893-022-01524-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/20/2022] [Indexed: 11/15/2022] Open
Abstract
Background Humeral nonunion with significant bone loss or shortening is uncommon and poses a complex clinical problem. We present a case of humeral nonunion with a large segmental bone defect treated with the distraction osteogenesis technique and remedy the radial nerve palsy produced during distraction osteogenesis by forearm tendon transfers. The reconstruction of upper limb function was achieved with satisfactory results. This case provides a referenceable alternative method for repairing large segmental bone defects due to complex nonunion of the upper extremity, as well as a remedy in the unfortunate event of radial nerve palsy, providing a reference and lessons learned for the treatment of similar cases and the management of possible complications. Case presentation A 31-year-old male patient experienced 9 years of hypertrophic nonunion due to an unreliable internal fixation. The radiographs showed the absence of bone bridging between the two fragments, loosening of the screws, and extensive osteolysis around the internal screws. The patient was treated with distraction osteogenesis. At the end of the distraction period, the patient unfortunately developed right radial nerve paresis, which was salvaged by forearm tendon transplantation, and finally reconstructed hand function and achieved bone union of the humerus. Conclusion Distraction osteogenesis, although not a panacea for all humeral nonunions with significant segmental bone loss, does offer a viable salvage procedure in this unusual and often complex clinical problem. When irreversible radial nerve palsy occurs during distraction, forearm tendon transfers can have a good clinical effect.
Collapse
Affiliation(s)
- Qiyu Jia
- Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yanshi Liu
- Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abudusalamu Alimujiang
- Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jian Guo
- Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dongsheng Chen
- Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yingbo Wang
- College of Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang, China.
| | - Aihemaitijiang Yusufu
- Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| | - Chuang Ma
- Department of Microrepair and Reconstruction, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
25
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
26
|
Advances in Experimental Research About Periodontitis: Lessons from the Past, Ideas for the Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1373:1-15. [DOI: 10.1007/978-3-030-96881-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|