1
|
Yu G, Wang X, Lv S, Wang B, Wang L, Zhang J. Design of Mg-Ni binary single-atom catalysts for conversion of carbon dioxide to syngas with a wide tunable ratio: Each species doing its own job or working together to win? J Colloid Interface Sci 2024; 671:165-174. [PMID: 38797142 DOI: 10.1016/j.jcis.2024.05.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Electrochemical carbon dioxide reduction reaction (eCO2RR) to generate syngas is an appealing strategy for CO2 net reduction. However, it suffers from the inferior faradaic efficiency (FE), selectivity, and difficult modulation of hydrogen/carbon monoxide (H2/CO) ratio. To address these issues, a series of magnesium-nickel (Mg-Ni) dual atomic catalysts with different Ni contents are fabricated on the nitrogen-doped carbon matrix (MgNiX-NC DACs) by one-step pyrolysis. MgNi5-NC electrocatalyst generates 0.51-0.79 H2/CO ratios in a potential range of -0.6 to -1.0 V vs. reversible hydrogen electrode (RHE) and the total FE reaches 100 % with good stability. While a wider range of H2/CO (0.95-4.34) is achieved for MgNi3-NC electrocatalyst in the same overpotential range, which is suitable for typical downstream thermochemical reactions. Introduction of Ni species accelerates the generation of CO, however, there is much less influence on the H2 production as compared with Mg-based single atomic electrocatalyst. According to the experimental results and density functional theory (DFT) calculations, the synergistic effect between Mg and Ni achieves the satisfied results rather than each one fulfill its own duty for selective producing H2 and CO, respectively. This work introduces a feasible approach to develop atomic catalysts on main group metal for more controllable CO2RR.
Collapse
Affiliation(s)
- Guanyao Yu
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Xueke Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Shuai Lv
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Baolin Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China
| | - Li Wang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, PR China.
| | - Jinglai Zhang
- Henan Key Laboratory of Protection and Safety Energy Storage of Light Metal Materials, Henan University, Kaifeng, Henan 475004, PR China; Henan Province Engineering Research Center of Green Anticorrosion Technology for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China; Henan Engineering Research Center of Corrosion and Protection for Magnesium Alloys, Henan University, Kaifeng, Henan 475004, PR China.
| |
Collapse
|
2
|
Zhong K, Sun P, Xu H. Advances in Defect Engineering of Metal Oxides for Photocatalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310677. [PMID: 38686700 DOI: 10.1002/smll.202310677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Indexed: 05/02/2024]
Abstract
Photocatalytic CO2 reduction technology, capable of converting low-density solar energy into high-density chemical energy, stands as a promising approach to alleviate the energy crisis and achieve carbon neutrality. Semiconductor metal oxides, characterized by their abundant reserves, good stability, and easily tunable structures, have found extensive applications in the field of photocatalysis. However, the wide bandgap inherent in metal oxides contributes to their poor efficiency in photocatalytic CO2 reduction. Defect engineering presents an effective strategy to address these challenges. This paper reviews the research progress in defect engineering to enhance the photocatalytic CO2 reduction performance of metal oxides, summarizing defect classifications, preparation methods, and characterization techniques. The focus is on defect engineering, represented by vacancies and doping, for improving the performance of metal oxide photocatalysts. This includes advancements in expanding the photoresponse range, enhancing photogenerated charge separation, and promoting CO2 molecule activation. Finally, the paper provides a summary of the current issues and challenges faced by defect engineering, along with a prospective outlook on the future development of photocatalytic CO2 reduction technology.
Collapse
Affiliation(s)
- Kang Zhong
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Peipei Sun
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hui Xu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| |
Collapse
|
3
|
Shen Y, Long Y, Li F, Ji Y, Cong Y, Jiang B, Zhang Y. SnS 2/MWNTs/sponge electrode combined with plasma dielectric barrier discharge catalytic system: CO 2 reduction and pollutant degradation. CHEMOSPHERE 2023; 344:140365. [PMID: 37802478 DOI: 10.1016/j.chemosphere.2023.140365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
SnS2 nanosheets combined with multi-walled carbon nanotubes (MWNTs) were made into sponge electrodes which were used for CO2 reduction reaction (CO2RR) in dielectric barrier discharges (DBD) system. The amounts of formate and formaldehyde produced by CO2 reduction with SnS2/MWNTs/sponge electrode were 299.52 and 31.62 μmol h-1, which were higher than that of MWNTs/sponge electrodes. The addition of pollutants had different degrees of inhibitory effect on CO2 reduction, among which addition of bisphenol A (BPA) had the smallest effect that the degradation rate of BPA was 94.37% and the C1 products remained 204.43 μmol after 60 min discharge. The mechanism of CO2RR was studied by quencher experiment, and the main contribution order of the active substance in DBD system for CO2RR is: H+>e->·OH>·O2-. It was found that the degradation process of pollutants consumed H+ and e- in solution, thereby inhibiting CO2RR. Generally, the SnS2/MWNTs/sponge electrode provided a reference for the design of catalysts for CO2 reduction and pollutant degradation in plasma gas-liquid system.
Collapse
Affiliation(s)
- Yiping Shen
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Yupei Long
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Fangying Li
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Yun Ji
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China
| | - Boqiong Jiang
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yi Zhang
- Zhejiang Gongshang University, School of Environmental Science and Engineering, Hangzhou, 310018, China; Instrumental Analysis Center of Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Mao X, Guo R, Chen Q, Zhu H, Li H, Yan Z, Guo Z, Wu T. Recent Advances in Graphitic Carbon Nitride Based Electro-Catalysts for CO 2 Reduction Reactions. Molecules 2023; 28:molecules28083292. [PMID: 37110526 PMCID: PMC10146859 DOI: 10.3390/molecules28083292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
The electrocatalytic carbon dioxide reduction reaction is an effective means of combating the greenhouse effect caused by massive carbon dioxide emissions. Carbon nitride in the graphitic phase (g-C3N4) has excellent chemical stability and unique structural properties that allow it to be widely used in energy and materials fields. However, due to its relatively low electrical conductivity, to date, little effort has been made to summarize the application of g-C3N4 in the electrocatalytic reduction of CO2. This review focuses on the synthesis and functionalization of g-C3N4 and the recent advances of its application as a catalyst and a catalyst support in the electrocatalytic reduction of CO2. The modification of g-C3N4-based catalysts for enhanced CO2 reduction is critically reviewed. In addition, opportunities for future research on g-C3N4-based catalysts for electrocatalytic CO2 reduction are discussed.
Collapse
Affiliation(s)
- Xinyi Mao
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Ruitang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Quhan Chen
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Huiwen Zhu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Hongzhe Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zijun Yan
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zeyu Guo
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Wu
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
- Municipal Key Laboratory of Clean Energy Technologies of Ningbo, University of Nottingham Ningbo China, Ningbo 315100, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| |
Collapse
|
5
|
Yang J, Yang Z, Yang K, Yu Q, Zhu X, Xu H, Li H. Indium-based ternary metal sulfide for photocatalytic CO2 reduction application. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Zhang Y, Si Z, Du H, Deng Y, Zhang Q, Wang Z, Yu Q, Xu H. Selective CO 2 Reduction to Ethylene Over a Wide Potential Window by Copper Nanowires with High Density of Defects. Inorg Chem 2022; 61:20666-20673. [DOI: 10.1021/acs.inorgchem.2c03649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ying Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhanbo Si
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Huishuang Du
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Yilin Deng
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Qiankang Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Zhaolong Wang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Qing Yu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| | - Hui Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Jiangsu University, Zhenjiang212013, P. R. China
| |
Collapse
|
7
|
Synchronous activation of Ag nanoparticles and BiOBr for boosting solar-driven CO2 reduction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Multidimensional In2O3/In2S3 heterojunction with lattice distortion for CO2 photoconversion. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63954-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Silver-Carbonaceous Microsphere Precursor-Derived Nano-Coral Ag Catalyst for Electrochemical Carbon Dioxide Reduction. Catalysts 2022. [DOI: 10.3390/catal12050479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The selective and effective conversion of CO2 into available chemicals by electrochemical methods was applied as a promising way to mitigate the environment and energy crisis. Metal silver is regarded as an efficient electrocatalyst that can selectively convert CO2 into CO at room temperature. In this paper, a series of coral-like porous Ag (CD-Ag) catalysts were fabricated by calcining silver-carbonaceous microsphere (Ag/CM) precursors with different Ag content and the formation mechanism of CD-Ag catalysts was proposed involving the Ag precursor reduction and CM oxidation. In the selective electrocatalytic reduction of CO2 to CO, the catalyst 15 CD-Ag showed a stable current density at −6.3 mA/cm2 with a Faraday efficiency (FE) of ca. 90% for CO production over 5 h in −0.95 V vs. RHE. The excellent performance of the 15 CD-Ag catalysts is ascribed to the special surface chemical state and the particular nano-coral porous structure with uniformly distributed Ag particles and pore structure, which can enhance the electrochemical active surface areas (ECSA) and provide more active sites and porosity compared with other CD-Ag catalysts and even Ag foil.
Collapse
|
10
|
Zhong K, Zhu X, Yang J, Mo Z, Qian J, He M, Song Y, Liu J, Chen H, Li H, Xu H. Ultrathin structure of oxygen doped carbon nitride for efficient CO 2photocatalytic reduction. NANOTECHNOLOGY 2021; 33:115404. [PMID: 34768251 DOI: 10.1088/1361-6528/ac3949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Photocatalytic conversion of carbon dioxide into fuels and valuable chemicals is a promising method for carbon neutralization and solving environmental problems. Through a simple thermal-oxidative exfoliation method, the O element was doped while exfoliated bulk g-C3N4into ultrathin structure g-C3N4. Benefitting from the ultrathin structure of g-C3N4, the larger surface area and shorter electrons migration distance effectively improve the CO2reduction efficiency. In addition, density functional thory computation proves that O element doping introduces new impurity energy levels, which making electrons easier to be excited. The prepared photocatalyst reduction of CO2to CO (116μmol g-1h-1) and CH4(47μmol g-1h-1).
Collapse
Affiliation(s)
- Kang Zhong
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xingwang Zhu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Jinman Yang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Zhao Mo
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Junchao Qian
- School of Chemistry, Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, People's Republic of China
| | - Minqiang He
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Yanhua Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003, People's Republic of China
| | - Jinyuan Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hanxiang Chen
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
11
|
Du H, Yu Q, Yang J, Zhang Y, Yuan J, She Y, Li H, Xu H. Positively charged silver improve carbon dioxide electroreduction reaction performance by introducing phosphate. J Colloid Interface Sci 2021; 609:65-74. [PMID: 34890951 DOI: 10.1016/j.jcis.2021.11.143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/03/2021] [Accepted: 11/23/2021] [Indexed: 11/26/2022]
Abstract
For noble metal catalysts such as Au and Ag, the weak adsorption of intermediates is an important factor in limiting the efficiency of CO2 electroreduction. Positively charged metals, which can lower the energy barriers of intermediate reactions, greatly facilitate the rapid conversion of CO2 molecules. In this work, a simple in situ synthesis method was utilized to form an Ag3PO4 oxide layer on the surface of Ag foil, and the oxidation state of silver retained after pre-reduction. The Ag3PO4/Ag catalyst not only increased the electrochemical surface area, but also enhanced the adsorption of intermediates to the active sites, resulting in the catalytic selectivity of 94.4% for the electroreduction of CO2 to CO. DFT calculations show that through internal electron regulation, PO43- can stabilize the positive state of Ag, thus increasing the Ag-O bond energy, which is conducive to the reduction of the reaction energy barrier and the improvement of catalytic stability.
Collapse
Affiliation(s)
- Huishuang Du
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Qing Yu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| | - Jinman Yang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Ying Zhang
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Junjie Yuan
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Huaming Li
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China
| | - Hui Xu
- School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|