1
|
Malefane ME, Managa M, Nkambule TTI, Kuvarega AT. s-scheme3D/3D Bi 0/BiOBr/P Doped g-C3 N4 with Oxygen Vacancies (Ov) for Photodegradation of Pharmaceuticals: In-situ H 2O 2 Production and Plasmon Induced Stability. CHEMSUSCHEM 2024:e202401471. [PMID: 39147701 DOI: 10.1002/cssc.202401471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Complications accompanying photocatalyst stability and recombination of exciton charges in pollutants degradation has been addressed through the construction of heterojunctions, especially S-scheme heterojunction with strong and distinctive redox centres. Herein, an S-scheme BiOBr (BOR) and g-C3N4PO4 (CNPO) catalyst (BORCNPO) with oxygen vacancy (Ov) was synthesized for levofloxacin (LVX) and oxytetracycline (OTC) photodegradation under visible light. The 3D/3D BORCNPO catalyst possessed C-O-Br bridging bonds for efficient charge transfer during the fabrication of S-scheme heterojunction. In-situ H2O2 formation affirmed by potassium titanium (IV) oxalate spectrophotometric method improved the mineralization ability of BORCNPO7.5 catalyst. Bi0 surface plasmon resonance (SPR) enhanced formation and involvement of ⋅O2 - and the stability of the catalyst which increased reaction rate with increasing cycling experiments. XPS and radical trapping experiments supported the S-scheme charge transfer mechanism formation with high degradation rate of LVX which was 3 times higher than OTC degradation rate. Mineralization of pollutants and their intermediates were demonstrated with florescence excitation and emission matrix (FEEM) and quadruple time of flight high performance liquid chromatography (QTOF-HPLC). This work advances development of highly stable and efficient catalysts for photodegradation of pollutants through the formation of S-scheme heterostructure.
Collapse
Affiliation(s)
- Mope E Malefane
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - Alex T Kuvarega
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| |
Collapse
|
2
|
Ma S, Yang D, Li B, Guan Y, Wu M, Wu J, Guo Y, Sheng L, Liu L, Yao T. An interfacial C-S bond bridged S-scheme ZnS/C 3N 5 for photocatalytic H 2 evolution: Opposite internal-electric-field of ZnS/C 3N 4, increased field strength, and accelerated surface reaction. J Colloid Interface Sci 2024; 664:960-971. [PMID: 38508031 DOI: 10.1016/j.jcis.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
An interfacial C-S bond bridged ZnS/C3N5 heterojunction was constructed for photocatalytic H2 evolution. Different from traditional type-II ZnS/C3N4 heterojunction, the electron transfer followed S-scheme pathway, due to opposite internal-electric-field (IEF) directions in these two heterojunctions. The C-S bond formation was carefully investigated, and they were susceptive to the preparation temperatures. In photocatalytic reaction, C-S bond was functioned as the "high-speed channel" for electron separation and transfer, and the IEF strength in ZnS/C3N5 was 1.86 × 108 V/m, 2.6 times higher than that in ZnS/C3N4. Moreover, the C-S bond also altered the surface molecular structure of ZnS/C3N5, and hence the surface reaction was accelerated via improving H2O adsorption and activation behaviors. Benefiting from the S-scheme pathway, enhanced IEF strength, and accelerated surface reaction, the photocatalytic H2 production over ZnS/C3N5 reached up to 20.18 mmol/g/h, 3.2 and 2.5 times higher than those of ZnS/C3N4 and ZnS/C3N5-300 without C-S bond.
Collapse
Affiliation(s)
- Shouchun Ma
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Dong Yang
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Bing Li
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yina Guan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Maoquan Wu
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Jie Wu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin, China
| | - Yongmei Guo
- Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou 350108, China
| | - Li Sheng
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Li Liu
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| | - Tongjie Yao
- State Key Lab Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
3
|
Chen X, Xu Z, Chen J, Yao L, Xie W, He J, Li N, Li J, Xu S, Zhu Y, Chen X, Zhu R. Continuous surface Z-Scheme and Schottky heterojunction Au/La2Ti2O7/Ag3PO4 catalyst with boosted charge separation through dual channels for excellent photocatalysis: Highlight influence factors regulation and catalytic system applicability. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
4
|
Guan Y, Fu G, Wang Q, Ma S, Yang Y, Xin B, Zhang J, Wu J, Yao T. Fe, Co, N co-doped hollow carbon capsules as a full pH range catalyst for pollutant degradation via a non-radical path in Fenton-like reaction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Makayeva N, Yergaziyeva G, Anisova M, Shaimerden Z, Dossumov K. Effect of the interaction of components in a nickel-molybdenum catalyst on its activity in decomposition of methane to hydrogen. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2022. [DOI: 10.15328/cb1281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work is devoted to the study of the activity of monometallic (Fe/Al2O3) and bimetallic (Fe-Mo/Al2O3) catalysts supported to carrier γ- Al2O3. It has been discovered that the bimetallic catalyst is more active than the monometallic catalyst in the methane decomposition reaction. The results of the influence of molybdenum oxide on the activity of Fe/Al2O3 catalyst in the methane decomposition reaction in the temperature range 500-850°C have been obtained. It has been determined that the addition of molybdenum oxide in the amount of 5 wt. % of the iron catalyst composition leads to an increase in the catalytic activity of the sample in the reaction of methanedecomposition to hydrogen at relatively low temperatures. Compared to Fe/Al2O3 on the FeMo/Al2O3 catalyst at a reaction temperature of 750°C, methane conversionincreases from 8% to 98%, hydrogen yield from 5% to 57%.
The increased field of activity Fe-Mo/Al2O3catalyst in the decomposition of methane to hydrogen compared to Fe/Al2O3 catalysts is due to an increase in the dispersity of the active phases of the catalyst, as well as the formation of an easily reduced Fe2(MоО4)3 phase, according to XRD, TPR-H2, and BET methods.
Collapse
|
6
|
Partially oxidized MXenes-derived C-TiO2/Ti3C2 coupled with Fe-C3N4 as a ternary Z-scheme heterojunction: Enhanced photothermal and photo-Fenton performance. J Colloid Interface Sci 2022; 626:639-652. [DOI: 10.1016/j.jcis.2022.06.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 06/19/2022] [Indexed: 11/18/2022]
|