1
|
Zhang P, Li N, Li L, Yu Y, Tuerhong R, Su X, Zhang B, Han L, Han Y. g-C 3N 4-Based Photocatalytic Materials for Converting CO 2 Into Energy: A Review. Chemphyschem 2024; 25:e202400075. [PMID: 38822681 DOI: 10.1002/cphc.202400075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Environmental pollution management and renewable energy development are humanity's biggest issues in the 21st century. The rise in atmospheric CO2, which has surpassed 400 parts per million, has stimulated research on CO2 reduction and conversion methods. Presently, photocatalytic conversion of CO2 to valuable hydrocarbons enables the transformation of solar energy into chemical energy and offers a novel avenue for energy conversion while regulating the greenhouse effect. This is an ideal strategy for simultaneously addressing environmental issues and the energy crisis. Photocatalysts are essential to photocatalytic processes. Photocatalyst is the core of photocatalytic technology, and graphite carbon nitride (g-C3N4) has attracted much attention because of its nonmetallic characteristics, and it has the characteristics of low cost, tunable electronic structure, easy manufacture and strong reducibility. However, its activity is not only affected by external reaction conditions, but also by the band gap structure, physical and chemical stability, surface morphology and specific surface area of the photocatalyst it. In this paper, the application progress of g-C3N4-based photocatalytic materials in CO2 reduction is reviewed, and the modification strategies of g-C3N4-based catalysts to obtain better catalytic efficiency and selectivity in CO2 photocatalytic reduction are summarized, and the future development of this material is prospected.
Collapse
Affiliation(s)
- Ping Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Ning Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Longjian Li
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Yongchong Yu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Reyila Tuerhong
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Xiaoping Su
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Bin Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Gansu Provincial Biomass Function Composites Engineering Research Center, Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou, 730030, P.R.China
| | - Lijuan Han
- Gansu Natural Energy Institute, Gansu Academy of Science, Lanzhou, 730046, P.R.China
| | - Yuqi Han
- College of Chemistry and Chemical Engineering, He Xi University, No.846 North Circle Road, Zhangye, 734000, P.R.China
| |
Collapse
|
2
|
Arumugam G, Durairaj S, Gonçale JC, Fonseca do Carmo PH, Terra Garcia M, Soares da Silva N, Borges BM, Loures FV, Ghosh D, Vivanco JF, Junqueira JC. Silver Nanoparticle-Embedded Carbon Nitride: Antifungal Activity on Candida albicans and Toxicity toward Animal Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25727-25739. [PMID: 38742469 DOI: 10.1021/acsami.4c02694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The development of engineered nanomaterials has been considered a promising strategy to control oral infections. In this study, silver-embedded carbon nitrides (Ag@g-CN) were synthesized and tested against Candida albicans, investigating their antifungal action and biocompatibility in animal cells. Ag@g-CN was synthesized by a simple one-pot thermal polymerization technique and characterized by various analytical techniques. X-ray diffraction (XRD) analysis revealed slight alterations in the crystal structure of g-CN upon the incorporation of Ag. Fourier transform infrared (FT-IR) spectroscopy confirmed the presence of Ag-N bonds, indicating successful silver incorporation and potential interactions with g-CN's amino groups. UV-vis spectroscopy demonstrated a red shift in the absorption edge of Ag@g-CN compared with g-CN, attributed to the surface plasmon resonance effect of silver nanoparticles. Field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) confirmed the 2D layered sheet like morphology of both materials. The Ag 3d peaks found in X-ray photoelectron spectroscopy (XPS) confirmed the presence of metallic Ag0 nanoparticles in Ag@g-CN. The Ag@g-CN materials exhibited high antifungal activity against reference and oral clinical strains of C. albicans, with minimal inhibitory concentration (MIC) ranges between 16-256 μg/mL. The mechanism of Ag@g-CN on C. albicans was attributed to the disruption of the membrane integrity and disturbance of the biofilm. In addition, the Ag@g-CN material showed good biocompatibility in the fibroblastic cell line and in Galleria mellonella, with no apparent cytotoxicity observed at a concentration up to 1000 μg/mL. These findings demonstrate the potential of the Ag@g-CN material as an effective and safe antifungal agent for the treatment of oral fungal infections.
Collapse
Affiliation(s)
- Ganeshkumar Arumugam
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, São Paulo 12245-000, Brazil
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Thandalam, Chennai 602105, Tamil Nadu, India
| | - Sivaraj Durairaj
- Chemical Biology Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar 2580335, Chile
| | - Juliana Caparroz Gonçale
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, São Paulo 12245-000, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, São Paulo 12245-000, Brazil
| | - Maíra Terra Garcia
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, São Paulo 12245-000, Brazil
| | - Newton Soares da Silva
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, São Paulo 12245-000, Brazil
| | - Bruno Montanari Borges
- Institute of Science and Technology, Federal University of São Paulo/UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Flavio Vieira Loures
- Institute of Science and Technology, Federal University of São Paulo/UNIFESP, São José dos Campos, São Paulo 12231-280, Brazil
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nanoscience and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India
| | - Juan F Vivanco
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Viña del Mar 2580335, Chile
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, São José dos Campos, São Paulo 12245-000, Brazil
| |
Collapse
|
3
|
Zhang JJ, Di J, Zhao YP, Zheng HS, Song P, Tian JZ, Jiang W, Zheng YJ. Synergistic defect and doping engineering building strong bonded S-scheme heterojunction for photocatalysis. CHEMOSPHERE 2023; 344:140347. [PMID: 37793552 DOI: 10.1016/j.chemosphere.2023.140347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
Photocatalytic degradation of pollutants is considered a promising approach for wastewater treatment, but is hampered by low efficiency and limited understanding of degradation pathways. A novel oxygen-doped porous g-C3N4/oxygen vacancies-rich BiOCl (OCN/OVBOC) heterostructure was prepared for photocatalytic degradation of bisphenol A (BPA). The synergistic defect and doping engineering favor the formation of strong bonded interface for S-scheme mechanism. Among them, 0.3 OCN/OVBOC showed the most excellent degradation rate, which was 8 times and 4 times higher than that of pure g-C3N4 and BiOCl, respectively. This excellent performance is mainly attributed to the significantly enhanced charge separation via strong bonded interface and redox capability of the S-scheme heterojunction structure, by tuning the coordination excitation and electron localization of the catalyst via O doping and vacancies. This work provides important insights into the role of synergistic defect and doping engineering in facilitating the formation of strong bonded S-scheme heterojunction and ultimately sheds new light on the design of efficient photocatalysts.
Collapse
Affiliation(s)
- Jia-Jing Zhang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jun Di
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China; Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, China.
| | - Yun-Peng Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - He-Shan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Pin Song
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Jing-Zhi Tian
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, National Special Superfine Powder Engineering Research Center, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yong-Jie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| |
Collapse
|
4
|
Xu Z, Chen Y, Wang B, Ran Y, Zhong J, Li M. Highly selective photocatalytic CO 2 reduction and hydrogen evolution facilitated by oxidation induced nitrogen vacancies on g-C 3N 4. J Colloid Interface Sci 2023; 651:645-658. [PMID: 37562306 DOI: 10.1016/j.jcis.2023.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023]
Abstract
The introduction of nitrogen vacancies into polymeric carbon nitride (PCN) has been attested to be a reliable strategy to enhance photocatalytic performance. Nitrogen vacancies were considered as active sites to promote the adsorption of target molecules and capture photoexcited electrons to inhibit the recombination of charge pairs, accelerate photoinduced electrons to participate in photocatalytic reaction. In this paper, a series of PCN with rich nitrogen vacancies were prepared by etching of chromic acid solution. Sample 20KCSCN had the highest photocatalytic performance whose evolution efficiency of CO2 to CO and CH4 can reach 3.9 and 0.5 μmol·g-1·h-1, respectively. These evolution efficiencies are 2.9 and 4 times higher than that of the PCN. Meanwhile, 20KCSCN demonstrates high CO conversion selectivity and stability. The successful introduction of nitrogen vacancies not only increases the active sites of PCN surface, but also optimizes the optical structure, which dramatically boosts the separation of photoexcited charge pairs and the reduction capacity of photogenerated electrons. The enhancement mechanism for photocatalytic CO2 reduction performance of PCN was proposed. Besides, photocatalytic H2 evolution experiments were performed on all samples to confirm the universality of PCN photocatalytic activity enhancement etched by chromic acid solution. H2 evolution rate on 20KCSCN can reach 652 μmol·g-1·h-1, which is 1.6-fold higher than that on PCN (254 μmol·g-1·h-1) after 4 h irradiation under a 300 W Xe lamp. This work offers new venue for introducing nitrogen vacancies in PCN to regulate photoexcited charge pairs transfer. The photocatalytic enhancement of CO2 reduction could be used to alleviate the serious issue of excessive CO2 emission and energy crisis.
Collapse
Affiliation(s)
- Zhengdong Xu
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Yang Chen
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Binghao Wang
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Yu Ran
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China
| | - Junbo Zhong
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| | - Minjiao Li
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China.
| |
Collapse
|
5
|
Nguyen Xuan T, Nguyen Thi D, Tran Thuong Q, Nguyen Ngoc T, Dang Quoc K, Molnár Z, Mukhtar S, Szabó-Bárdos E, Horváth O. Effect of Copper-Modification of g-C 3N 4 on the Visible-Light-Driven Photocatalytic Oxidation of Nitrophenols. Molecules 2023; 28:7810. [PMID: 38067540 PMCID: PMC10708227 DOI: 10.3390/molecules28237810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 04/07/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4) has proved to be a promising heterogeneous photocatalyst in the visible range. It can be used, among others, for the oxidative conversion of environmentally harmful nitrophenols occurring in wastewater. However, its photocatalytic activity needs to be enhanced, which can be achieved by modification with various dopants. In our work, copper-modified g-C3N4 was prepared by ultrasonic impregnation of the pristine g-C3N4 synthesized from thiourea. The morphology, microstructure, and optical properties of the photocatalysts were characterized by XRD, FT-IR, DRS, SEM, XPS, and TEM. DRS analysis indicated a slight change in both the CB and the VB energies of Cu/g-C3N4 compared to those of g-C3N4. The efficiency of the photocatalysts prepared was tested by the degradation of nitrophenols. Copper modification caused a sevenfold increase in the rate of 4-nitrophenol degradation in the presence of H2O2 at pH = 3. This dramatic enhancement can be attributed to the synergistic effect of copper and H2O2 in this photocatalytic system. A minor Fenton reaction role was also detected. The reusability of the Cu/g-C3N4 catalyst was demonstrated through five cycles. Copper-modified g-C3N4 with H2O2 proved to be applicable for efficient visible-light-driven photocatalytic oxidative degradation of nitrophenols.
Collapse
Affiliation(s)
- Truong Nguyen Xuan
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No.1 Dai Co Viet Street, Hai Ba Trung District, Hanoi 100000, Vietnam; (T.N.X.); (Q.T.T.); (T.N.N.)
| | - Dien Nguyen Thi
- Viettel Aerospace Institute, Viettel Group, Hoa Lac High-Tech Park, Thach That District, Hanoi 10000, Vietnam;
| | - Quang Tran Thuong
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No.1 Dai Co Viet Street, Hai Ba Trung District, Hanoi 100000, Vietnam; (T.N.X.); (Q.T.T.); (T.N.N.)
| | - Tue Nguyen Ngoc
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, No.1 Dai Co Viet Street, Hai Ba Trung District, Hanoi 100000, Vietnam; (T.N.X.); (Q.T.T.); (T.N.N.)
| | - Khanh Dang Quoc
- School of Materials Science and Engineering, Hanoi University of Science and Technology, No.1 Dai Co Viet Street, Hai Ba Trung District, Hanoi 100000, Vietnam;
| | - Zsombor Molnár
- Environmental Mineralogy Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary;
| | - Shoaib Mukhtar
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary (E.S.-B.)
| | - Erzsébet Szabó-Bárdos
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary (E.S.-B.)
| | - Ottó Horváth
- Research Group of Environmental and Inorganic Photochemistry, Center for Natural Sciences, Faculty of Engineering, University of Pannonia, P.O. Box 1158, H-8210 Veszprém, Hungary (E.S.-B.)
| |
Collapse
|
6
|
Plasmonic photocatalysis: mechanism, applications and perspectives. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
7
|
Designing ultrathin Ag-embedded g-C3N4 nanocomposites for enhanced disinfection performance under visible light. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Jiang T, Wang B, Gao B, Cheng N, Feng Q, Chen M, Wang S. Degradation of organic pollutants from water by biochar-assisted advanced oxidation processes: Mechanisms and applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130075. [PMID: 36209607 DOI: 10.1016/j.jhazmat.2022.130075] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/10/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Biochar has shown large potential in environmental remediation because of its low cost, large specific surface area, porosity, and high conductivity. Biochar-assisted advanced oxidation processes (BC-AOPs) have recently attracted increasing attention to the remediation of organic pollutants from water. However, the effects of biochar properties on catalytic performance need to be further explored. There are still controversial and knowledge gaps in the reaction mechanisms of BC-AOPs, and regeneration methods of biochar catalysts are lacking. Therefore, it is necessary to systematically review the latest research progress of BC-AOPs in the treatment of organic pollutants in water. In this review, first of all, the effects of biochar properties on catalytic activity are summarized. The biochar properties can be optimized by changing the feedstocks, preparation conditions, and modification methods. Secondly, the catalytic active sites and degradation mechanisms are explored in different BC-AOPs. Different influencing factors on the degradation process are analyzed. Then, the applications of BC-AOPs in environmental remediation and regeneration methods of different biochar catalysts are summarized. Finally, the development prospects and challenges of biochar catalysts in environmental remediation are put forward, and some suggestions for future development are proposed.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| | - Bing Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China.
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Ning Cheng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
9
|
Biomass-Derived Carbon Materials in Heterogeneous Catalysis: A Step towards Sustainable Future. Catalysts 2022. [DOI: 10.3390/catal13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biomass-derived carbons are emerging materials with a wide range of catalytic properties, such as large surface area and porosity, which make them ideal candidates to be used as heterogeneous catalysts and catalytic supports. Their unique physical and chemical properties, such as their tunable surface, chemical inertness, and hydrophobicity, along with being environmentally friendly and cost effective, give them an edge over other catalysts. The biomass-derived carbon materials are compatible with a wide range of reactions including organic transformations, electrocatalytic reactions, and photocatalytic reactions. This review discusses the uses of materials produced from biomass in the realm of heterogeneous catalysis, highlighting the different types of carbon materials derived from biomass that are potential catalysts, and the importance and unique properties of heterogeneous catalysts with different preparation methods are summarized. Furthermore, this review article presents the relevant work carried out in recent years where unique biomass-derived materials are used as heterogeneous catalysts and their contribution to the field of catalysis. The challenges and potential prospects of heterogeneous catalysis are also discussed.
Collapse
|
10
|
Ren X, Yu Q, Pan J, Wang Q, Li Y, Shi N. Photocatalytic degradation of methylene blue by C/g-C3N4 composites formed by different carbon sources. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
A tube-like dual Z-scheme indium oxide@indium phosphide/cuprous oxide photocatalyst based on metal–organic framework for efficient CO2 reduction with water. J Colloid Interface Sci 2022; 616:532-539. [DOI: 10.1016/j.jcis.2022.02.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
|
12
|
Synergetic metal-semiconductor interaction: Single-atomic Pt decorated CdS nano-photocatalyst for highly water-to-hydrogen conversion. J Colloid Interface Sci 2022; 621:160-168. [PMID: 35461131 DOI: 10.1016/j.jcis.2022.04.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 01/07/2023]
Abstract
Solar driven water-to-hydrogen conversion is a promising technology for the typical sustainable production mode, so increasing efforts are being devoted to exploit high-performance photocatalytic materials. Cadmium sulfide (CdS) is widely used to prepare highly active photocatalysts owing to its merits of broadband-light harvesting and feasible band structure. However, the slow photo-carriers' migration in CdS body structure generally results in high-frequency carriers recombination, which leads to unsatisfied photoactivity. Metallic single-atom surface decoration is an effective method to build the strong metal-support interaction for promotion of photo-carriers' migration. Herein, a simple light-induced reduction procedure was proposed to decorate single-atomic Pt on the surface of CdS nanoparticles for highly photocatalytic HER activity. Research showed that the synergetic metal (Pt)-semiconductor (CdS) interaction significantly promoted the body-to-surface (BTS) photo-carriers' migration of CdS, thereby the high light-to-fuel conversion efficiency (AQY500 nm = 25.70%) and 13.5-fold greater simulated sunlight driven HER rate of bare CdS was achieved by this CdS-Pt nano-photocatalyst. Based on the photo-electrochemical analysis and density functional theory calculations, the remarkably improved HER photoactivity can be attributed to the enhanced light-harvesting, promoted BTS electron migration and reduced reaction energy barriers. This study provides a facile procedure to obtain CdS based photocatalyst with metallic single-atom sites for high-performance HER photocatalysis.
Collapse
|
13
|
Wang Y, Zhao J, Liu Y, Liu G, Ding S, Li Y, Xia J, Li H. Synergy between plasmonic and sites on gold nanoparticle-modified bismuth-rich bismuth oxybromide nanotubes for the efficient photocatalytic CC coupling synthesis of ethane. J Colloid Interface Sci 2022; 616:649-658. [PMID: 35245792 DOI: 10.1016/j.jcis.2022.02.109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
The photocatalytic reduction of carbon dioxide (CO2) to fossil fuels has attracted widespread attention. However, obtaining the high value-added hydrocarbons, especially C2+ products, remains a considerable challenge. Herein, gold (Au) nanoparticle-modified bismuth-rich bismuth oxybromide Bi12O17Br2 nanotube composites were designed and tested. Au nanoparticles act as electron traps and thermal electron donors that promote the efficient separation and migration of carriers to form the C2+ product. As a result, compared with the pure Bi12O17Br2 nanotubes, Au@Bi12O17Br2 composites can not only produce the carbon monoxide (CO) and methane (CH4), but also covert CO2 into ethane (C2H6). In this study, Au@Bi12O17Br2-700 was used to obtain a C2H6 production rate of 29.26 μmol h-1 g-1. The selectivities during a 5-hour test reached 94.86% for hydrocarbons and 90.81% for C2H6. The proposed approach could be used to design high-performance photocatalysts to convert CO2 into high value-added hydrocarbon products.
Collapse
Affiliation(s)
- Yu Wang
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Junze Zhao
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Yunmiao Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Gaopeng Liu
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Shunmin Ding
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yingjie Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China
| | - Jiexiang Xia
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| | - Huaming Li
- School of Chemistry and Chemical Engineering, Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, P. R. China.
| |
Collapse
|
14
|
Liu Q, Zhao X, Song X, Liu X, Zhou W, Wang H, Huo P. Pd Nanosheet-Decorated 2D/2D g-C 3N 4/WO 3·H 2O S-Scheme Photocatalyst for High Selective Photoreduction of CO 2 to CO. Inorg Chem 2022; 61:4171-4183. [PMID: 35188745 DOI: 10.1021/acs.inorgchem.1c04034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of the global economy in recent years, environmental problems, greenhouse effect, and so forth have been of concern for countries all over the world. The key for solving the greenhouse effect is the reduction of CO2. With the development of photocatalytic reduction of CO2, hybrid photocatalytic nanostructures composed of noble metals and plasmonic semiconductors are being widely studied. In this work, S-scheme photocatalysts with a g-C3N4/WO3·H2O/Pd heterostructure was constructed by introducing ultrathin Pd nanosheets into the optimized 2D/2D g-C3N4/WO3·H2O binary system. The S-scheme charge transfer generated by the matched band gap of g-C3N4 and WO3·H2O can effectually improve the electron transfer rate and the redox ability of photogenerated carriers. The introduction of Pd nanosheets can inject a large number of hot electrons into the semiconductor on the basis of the S-scheme heterojunction to participate in the reaction. The S-scheme electron transfer method is used to improve the utilization rate of thermionic electrons and achieve the effect of widening the near-infrared-light absorption area of the composite material. Moreover, the reaction was carried out in water without the addition of any sacrificial agent, which can better reflect the green environmental protection of the experiment. This investigation will promote the broad-spectrum application of new and environment-friendly thermoelectron-assisted S-scheme photocatalysts, and on this basis, the possible reaction mechanism is discussed.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xiaoxue Zhao
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xianghai Song
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Xin Liu
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiqiang Zhou
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Huiqin Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Pengwei Huo
- Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
15
|
Li JJ, Zhang Q, Zhang LY, Zhang JY, Liu Y, Zhang N, Fang YZ. Interfacial band bending induced charge-transfer regulation over Ag@ZIF-8@g-C 3N 4 to boost photocatalytic CO 2 reduction into syngas. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00403h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The use of the AZC-10 heterostructure enables excellent syngas production rates of 4076.4 μmol gcatalyst−1 h−1 and 3326.55 μmol gcatalyst−1 h−1 for CO and H2, respectively, much higher than other reported photocatalysts.
Collapse
Affiliation(s)
- Jia-Jia Li
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Qing Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Lin-Yan Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Jian-Yong Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yufeng Liu
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Na Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| | - Yong-Zheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China
| |
Collapse
|
16
|
Dong J, Zhang Y, Hussain MI, Zhou W, Chen Y, Wang LN. g-C 3N 4: Properties, Pore Modifications, and Photocatalytic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:121. [PMID: 35010072 PMCID: PMC8746910 DOI: 10.3390/nano12010121] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022]
Abstract
Graphitic carbon nitride (g-C3N4), as a polymeric semiconductor, is promising for ecological and economical photocatalytic applications because of its suitable electronic structures, together with the low cost, facile preparation, and metal-free feature. By modifying porous g-C3N4, its photoelectric behaviors could be facilitated with transport channels for photogenerated carriers, reactive substances, and abundant active sites for redox reactions, thus further improving photocatalytic performance. There are three types of methods to modify the pore structure of g-C3N4: hard-template method, soft-template method, and template-free method. Among them, the hard-template method may produce uniform and tunable pores, but requires toxic and environmentally hazardous chemicals to remove the template. In comparison, the soft templates could be removed at high temperatures during the preparation process without any additional steps. However, the soft-template method cannot strictly control the size and morphology of the pores, so prepared samples are not as orderly as the hard-template method. The template-free method does not involve any template, and the pore structure can be formed by designing precursors and exfoliation from bulk g-C3N4 (BCN). Without template support, there was no significant improvement in specific surface area (SSA). In this review, we first demonstrate the impact of pore structure on photoelectric performance. We then discuss pore modification methods, emphasizing comparison of their advantages and disadvantages. Each method's changing trend and development direction is also summarized in combination with the commonly used functional modification methods. Furthermore, we introduce the application prospects of porous g-C3N4 in the subsequent studies. Overall, porous g-C3N4 as an excellent photocatalyst has a huge development space in photocatalysis in the future.
Collapse
Affiliation(s)
- Jiaqi Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
| | - Yue Zhang
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| | - Muhammad Irfan Hussain
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
| | - Wenjie Zhou
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| | - Yingzhi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| | - Lu-Ning Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China; (J.D.); (M.I.H.)
- Shunde Graduate School, University of Science and Technology Beijing, Foshan 528399, China; (Y.Z.); (W.Z.)
| |
Collapse
|
17
|
Bi 2S 3 quantum dots in situ grown on MoS 2 nanoflowers: An efficient electron-rich interface for photoelectrochemical N 2 reduction. J Colloid Interface Sci 2021; 611:294-305. [PMID: 34954605 DOI: 10.1016/j.jcis.2021.12.096] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022]
Abstract
Photoelectrocatalysis is considered a green, environmentally friendly, sustainable technology for NH3 synthesis. However, the low efficiency of ammonia synthesis is currently the primary problem in photoelectrochemical nitrogen reduction reactions (PEC NRR). Herein, a nanocomposite BQD/MS developed through the in-situ growth of Bi2S3 quantum dots (BQD) on MoS2 (MS) nanoflowers was demonstrated as an efficient PEC NRR catalyst. Experimental results showed that the strong interaction between BQD and MS modulated the interfacial charge distribution and increased the electron density on the MS side. Meanwhile, the excellent structure of BQD/MS promoted the effective migration of photogenerated electrons from excited BQD to the MS surface. The electron-rich MS reaction interface was conducive to cleaving the stable NN bond and improving the N2 reduction performance. As a result, the prepared BQD/15MS photocathode obtained an excellent Faradaic efficiency of 33.2% and an NH3 yield of 18.5 μg h-1 mg-1, which was about three times that of bare MS.
Collapse
|
18
|
Lai H, Zeng X, Song T, Yin S, Long B, Ali A, Deng GJ. Fast synthesis of porous iron doped CeO 2 with oxygen vacancy for effective CO 2 photoreduction. J Colloid Interface Sci 2021; 608:1792-1801. [PMID: 34742088 DOI: 10.1016/j.jcis.2021.10.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 01/10/2023]
Abstract
The activity of photocatalytic CO2 conversion to carbon-containing products is determined by the adsorption and activation of CO2 molecules on the surface of catalyst. Here, iron doped porous CeO2 with oxygen vacancy (PFeCe) was prepared by one-step combustion method. The amount of CO2 adsorbed via using the porous structure has been significantly increased in the case of a relatively small specific surface area and CO2 molecules are more easily captured and undergo a reduction reaction with photoinduced carriers. In addition, oxygen vacancies are formed in the iron doped CeO2 lattice as the active sites for CO2 reduction, which can form strong interactions with CO2 molecules, thereby effectively activating CO2 molecules. The reduction products of CO2 over PFeCe composite are CO and CH4, which is approximately 9.0 and 7.7 folds than that of CeO2. This work offers insights for the construction of efficient ceria-based photocatalysts to further achieve robust solar CO2 conversion.
Collapse
Affiliation(s)
- Haiwei Lai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Xiangdong Zeng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Ting Song
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| | - Shiheng Yin
- Analytical and Testing Center, South China University of Technology, Guangzhou 510640, PR China
| | - Bei Long
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China
| | - Atif Ali
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, PR China.
| |
Collapse
|