1
|
Qiao H, Zheng L, Hu S, Tang G, Suo H, Liu C. Facile low-temperature supercritical carbonization method to prepare high-loading nickel single atom catalysts for efficient photodegradation of tetracycline. J Environ Sci (China) 2024; 138:373-384. [PMID: 38135403 DOI: 10.1016/j.jes.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 12/24/2023]
Abstract
Environmental photocatalysis is a promising technology for treating antibiotics in wastewater. In this study, a supercritical carbonization method was developed to synthesize a single-atom photocatalyst with a high loading of Ni (above 5 wt.%) anchored on a carbon-nitrogen-silicate substrate for the efficient photodegradation of a ubiquitous environmental contaminant of tetracycline (TC). The photocatalyst was prepared from an easily obtained metal-biopolymer-inorganic supramolecular hydrogel, followed by supercritical drying and carbonization treatment. The low-temperature (300°C) supercritical ethanol treatment prevents the excessive structural degradation of hydrogel and greatly reduces the metal clustering and aggregation, which contributed to the high Ni loading. Atomic characterizations confirmed that Ni was present at isolated sites and stabilized by Ni-N and Ni-O bonds in a Ni-(N/O)6C/SiC configuration. A 5% Ni-C-Si catalyst, which performed the best among the studied catalysts, exhibited a wide visible light response with a narrow bandgap of 1.45 eV that could efficiently and repeatedly catalyze the oxidation of TC with a conversion rate of almost 100% within 40 min. The reactive species trapping experiments and electron spin resonance (ESR) tests demonstrated that the h+, and ·O2- were mainly responsible for TC degradation. The TC degradation mechanism and possible reaction pathways were provided also. Overall, this study proposed a novel strategy to synthesize a high metal loading single-atom photocatalyst that can efficiently remove TC with high concentrations, and this strategy might be extended for synthesis of other carbon-based single-atom catalysts with valuable properties.
Collapse
Affiliation(s)
- Han Qiao
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwen Hu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongri Suo
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chongxuan Liu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
2
|
Yi M, Ren Y, Zhang X, Zhu Z, Zhang J. Ionic liquid-assisted synthesis of N, F, and B co-doped BiOBr/Bi 2Se 3 on Mo 2CT x for enhanced performance in hydrogen evolution reaction and supercapacitors. J Colloid Interface Sci 2024; 658:334-342. [PMID: 38113542 DOI: 10.1016/j.jcis.2023.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Heteroatom doping and heterojunction formation are effective strategies to enhance electrochemical performance. In this study, we present a novel approach that utilizes an ionic liquid-assisted synthesis method to fabricate a BiOBr-based material, which is subsequently loaded onto Mo2CTx via a selenization treatment to create a BiOBr/Bi2Se3 heterostructure, denoted as NBF-BiOBr/Bi2Se3/Mo2CTx. The incorporation of heteroatoms improves its hydrophilicity and electronegativity, while the formation of heterojunctions adjusts the electronic structure at the interface, resulting in lower OH-/H+ adsorption energy. The specific surface area of NBF-BiOBr/Bi2Se3/Mo2CTx is 193.1 m2/g. In hydrogen evolution reaction (HER) tests, NBF-BiOBr/Bi2Se3/Mo2CTx exhibits exceptional catalytic performance in acidic media, requiring only an overpotential of 109 mV to achieve a current density of 10 mA cm-2. Furthermore, NBF-BiOBr/Bi2Se3/Mo2CTx demonstrates superior electrochemical performance in an asymmetric supercapacitor, with an energy density as high as 55.6 Wh kg-1 at a power density of 749.9 Wh kg-1. This work provides a novel approach for heteroatom doping and heterojunction synthesis, offering promising prospects for further advancements in the field.
Collapse
Affiliation(s)
- Mingjie Yi
- College of Environmental and Biological Engineering, Fujian Provincial Key Laboratory of Ecology-Toxicological Effects & Control for Emerging Contaminants, Key Laboratory of Ecological Environment and Information Atlas (Putian University) Fujian Provincial University, Putian University, Putian 351100, China; State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi Ren
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xueting Zhang
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhenye Zhu
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Chen W, Zhang WJ, Wang K, Chang L, Yan RQ, Xiong X, Huang GB, Han DM. Oxygen Vacancy-Mediated CuWO 4/CuBi 2O 4 Samples with Efficient Charge Transfer for Enhanced Catalytic Activity toward Photodegradation of Pharmacologically Active Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38018894 DOI: 10.1021/acs.langmuir.3c02408] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Photocatalytic degradation is a promising method for controlling the increasing contamination of the water environment due to pharmacologically active compounds (PHACs). Herein, oxygen vacancy (OV)-modulated Z-scheme CuWO4/CuBi2O4 hybrid systems were fabricated via thermal treatment by loading of CuWO4 nanoparticles with OVs on CuBi2O4 surfaces. The synthesized CuWO4/CuBi2O4 hybrid samples exhibited an enhanced photodegradation ability to remove PHACs under visible-light irradiation. More importantly, an optimized sample (10 wt % CuWO4/CuBi2O4) exhibited superior catalytic activity and excellent recycling stability for PHAC photodegradation. In addition, possible degradation paths for PHAC removal over the CuWO4/CuBi2O4 hybrid systems were proposed. The enhanced photocatalytic performance could be attributed to the efficient separation and transfer of photoformed charge pairs via the Z-scheme mechanism. This Z-scheme mechanism was systematically analyzed using trapping experiments of active species, ultraviolet photoelectron spectroscopy, electron spin resonance, and the photodepositions of noble metals. The findings of this study can pave the way for developing highly efficient Z-scheme photocatalytic systems for PHAC photodegradation.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Wen-Jie Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Kai Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Ling Chang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Rui-Qiang Yan
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Xianqiang Xiong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guo-Bo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
4
|
Agurokpon D, Louis H, Benjamin I, Godfrey OC, Ghotekar S, Adeyinka AS. Impact of Polythiophene ((C 4H 4S) n; n = 3, 5, 7, 9) Units on the Adsorption, Reactivity, and Photodegradation Mechanism of Tetracycline by Ti-Doped Graphene/Boron Nitride (Ti@GP_BN) Nanocomposite Materials: Insights from Computational Study. ACS OMEGA 2023; 8:42340-42355. [PMID: 38024685 PMCID: PMC10652268 DOI: 10.1021/acsomega.3c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/08/2023] [Indexed: 12/01/2023]
Abstract
This study addresses the formidable persistence of tetracycline (TC) in the environment and its adverse impact on soil, water, and microbial ecosystems. To combat this issue, an innovative approach by varying polythiophene ((C4H4S)n; n = 3, 5, 7, 9) units and the subsequent interaction with Ti-doped graphene/boron nitride (Ti@GP_BN) nanocomposites was applied as catalysts for investigating the molecular structure, adsorption, excitation analysis, and photodegradation mechanism of tetracycline within the framework of density functional theory (DFT) at the B3LYP-gd3bj/def2svp method. This study reveals a compelling correlation between the adsorption potential of the nanocomposites and their corresponding excitation behaviors, particularly notable in the fifth and seventh units of the polythiophene configuration. These units exhibit distinct excitation patterns, characterized by energy levels of 1.3406 and 924.81 nm wavelengths for the fifth unit and 1.3391 and 925.88 nm wavelengths for the seventh unit. Through exploring deeper, the examination of the exciton binding energy emerges as a pivotal factor, bolstering the outcomes derived from both UV-vis transition analysis and adsorption exploration. Notably, the calculated exciton binding energies of 0.120 and 0.103 eV for polythiophene units containing 5 and 7 segments, respectively, provide compelling confirmation of our findings. This convergence of data reinforces the integrity of our earlier analyses, enhancing our understanding of the intricate electronic and energetic interplay within these intricate systems. This study sheds light on the promising potential of the polythiophene/Ti-doped graphene/boron nitride nanocomposite as an efficient candidate for TC photodegradation, contributing to the advancement of sustainable environmental remediation strategies. This study was conducted theoretically; hence, experimental studies are needed to authenticate the use of the studied nanocomposites for degrading TC.
Collapse
Affiliation(s)
- Daniel
C. Agurokpon
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Hitler Louis
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Pure and Applied Chemistry, University
of Calabar, Calabar 540221, Nigeria
- Centre for
Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital
and Research Institute, Chettinad Academy
of Research and Education, Kelambakkam 603103, Tamil Nadu India
| | - Innocent Benjamin
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
| | - Obinna C. Godfrey
- Computational
and Bio-Simulation Research Group, University
of Calabar, Calabar 540221, Nigeria
- Department
of Biochemistry, University of Calabar, Calabar 540221, Nigeria
| | - Suresh Ghotekar
- Department
of Chemistry, Smt. Devkiba Mohansinhji, Chauhan College of Commerce
and Science, University of Mumbai, Silvassa 396, India
| | - Adedapo S. Adeyinka
- Department
of Chemical Sciences, University of Johannesburg, Auckland Park 2006, South-Africa
| |
Collapse
|
5
|
Zhu B, Dong Q, Huang J, Yang M, Chen X, Zhai C, Chen Q, Wang B, Tao H, Chen L. Self-Assembly of Bi 2Sn 2O 7/β-Bi 2O 3 S-Scheme Heterostructures for Efficient Visible-Light-Driven Photocatalytic Degradation of Tetracycline. ACS OMEGA 2023; 8:13702-13714. [PMID: 37091378 PMCID: PMC10116523 DOI: 10.1021/acsomega.2c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
Fabrication of S-scheme heterojunctions with enhanced redox capability offers an effective approach to address environmental remediation. In this study, high-performance Bi2Sn2O7/β-Bi2O3 S-scheme heterojunction photocatalysts were fabricated via the in situ growth of Bi2Sn2O7 on β-Bi2O3 microspheres. The optimized Bi2Sn2O7/β-Bi2O3 (BSO/BO-0.4) degradation efficiency for tetracycline hydrochloride was 95.5%, which was 2.68-fold higher than that of β-Bi2O3. This improvement originated from higher photoelectron-hole pair separation efficiency, more exposed active sites, excellent redox capacity, and efficient generation of ·O2 - and ·OH. Additionally, Bi2Sn2O7/β-Bi2O3 exhibited good stability against photocatalytic degradation, and the degradation efficiency remained >89.7% after five cycles. The photocatalytic mechanism of Bi2Sn2O7/β-Bi2O3 S-scheme heterojunctions was elucidated. In this study, we design and fabricate high-performance heterojunction photocatalysts for environmental remediation using S-scheme photocatalysts.
Collapse
Affiliation(s)
- Baikang Zhu
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Qinbin Dong
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jianghua Huang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Mengmeng Yang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xianlei Chen
- Zhoushan
Institute of Calibration and Testing for Quality and Technology Supervision, Zhoushan, Zhejiang 316000, China
| | - Chunyang Zhai
- School
of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315021, China
| | - Qingguo Chen
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Bohong Wang
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
| | - Hengcong Tao
- School
of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan 316022, China
- National
and Local Joint Engineering Research Center of Harbor Oil & Gas
Storage and Transportation Technology, Zhoushan 316022, China
| | - Li Chen
- Department
of General Practice, First Medical Center, Chinese PLA General Hospital, Beijing 100036, China
| |
Collapse
|
6
|
Gao L, Han D, Wang Z, Gu F. Metal-organic framework MIL-68(In)-NH2-derived carbon-covered cobalt-doped bi-crystalline In2O3 tubular structures for efficient photocatalytic degradation of tetracycline hydrochloride. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ghamari F, Raoufi D, Arjomandi J, Nematollahi D. Surface fractality and crystallographic texture properties of mixed and mono metallic MOFs as a new concept for energy storage devices. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Xue J, Li J, Gao J, Wang M, Ma S. CoFe2O4 functionalized PVDF membrane for synchronous oil/water separation and peroxomonosulfate activation toward aromatic pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Yin X, Sun X, Li D, Xie W, Mao Y, Liu Z, Liu Z. 2D/2D Phosphorus-Doped g-C 3N 4/Bi 2WO 6 Direct Z-Scheme Heterojunction Photocatalytic System for Tetracycline Hydrochloride (TC-HCl) Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192214935. [PMID: 36429655 PMCID: PMC9691143 DOI: 10.3390/ijerph192214935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 05/31/2023]
Abstract
Bi2WO6-based heterojunction photocatalyst for antibiotic degradation has been a research hotspot, but its photocatalytic performance needs to be further improved. Therefore, 2D/2D P-doped g-C3N4/Bi2WO6 direct Z-scheme heterojunction photocatalysts with different composition ratios were prepared through three strategies of phosphorus (P) element doping, morphology regulation, and heterojunction, and the efficiency of its degradation of tetracycline hydrochloride (TC-HCl) under visible light was studied. Their structural, optical, and electronic properties were evaluated, and their photocatalytic efficiency for TC-HCl degradation was explored with a detailed assessment of the active species, degradation pathways, and effects of humic acid, different anions and cations, and water sources. The 30% P-doped g-C3N4/Bi2WO6 had the best photocatalytic performance for TC-HCl degradation. Its photocatalytic rate was 4.5-, 2.2-, and 1.9-times greater than that of g-C3N4, P-doped g-C3N4, and Bi2WO6, respectively. The improved photocatalytic efficiency was attributed to the synergistic effect of P doping and 2D/2D direct Z-scheme heterojunction construction. The stability and reusability of the 30% P-doped C3N4/Bi2WO6 were confirmed by cyclic degradation experiments. Radical scavenging experiments and electron spin resonance spectroscopy showed that the main active species were •O2- and h+. This work provides a new strategy for the preparation of direct Z-scheme heterojunction catalysts with high catalytic performance.
Collapse
Affiliation(s)
- Xudong Yin
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xiaojie Sun
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541006, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Yufeng Mao
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhenghui Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Zhisen Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, Key Laboratory of Petrochemical Pollution Control of Guangdong Higher Education Institutes, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
10
|
Zhu P, Lin J, Liu M, Duan M, Luo D, Wu X, Zhang S. Nd2Sn2O7/Bi2Sn2O7/Ag3PO4 double Z-type heterojunction for antibiotic photodegradation under visible light irradiation: Mechanism, optimization and pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Efficient simultaneous removal of tetracycline hydrochloride and Cr(VI) through photothermal-assisted photocatalytic-Fenton-like processes with CuOx/γ-Al2O3. J Colloid Interface Sci 2022; 622:526-538. [DOI: 10.1016/j.jcis.2022.04.091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/16/2022] [Indexed: 11/23/2022]
|