1
|
Wang L, Zhao Y, Chen H, Yang Y, Wang D, Shang H, Zhang B. Phosphorus and sulfur co-doped nickel molybdate with rich-oxygen vacancies for efficient water splitting. J Colloid Interface Sci 2025; 677:167-177. [PMID: 39089125 DOI: 10.1016/j.jcis.2024.07.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
The rational design of high-performance electrocatalysts is essential for promoting the industrialization of electrocatalytic water-splitting technology. Herein, phosphorus and sulfur co-doped nickel molybdate with rich-oxygen vacancies (P, S-NiMoO4) was prepared as an efficient bifunctional self-supporting water-splitting catalyst from the perspective of enhancing the conductivity and optimizing the electronic configurations. The incorporation of P, S and oxygen vacancies greatly enhances the conductivity and charge-transfer efficiency of NiMoO4. Additionally, P and S can serve as proton carriers and electron acceptors to enhance the catalytic activity by accelerating proton activation and high-valent metal generation in the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). As expected, P, S-NiMoO4 demonstrates efficient bifunctional catalytic activity with an overpotential of only 31/206 mV at 10 mA cm-2 for HER/OER in 1 M KOH. Meantime, the electrolyzer assembled with P, S-NiMoO4 as electrodes requires a voltage of only 1.55 V to achieve a water-splitting current density of 50 mA cm-2 along with good stability over 110 h. This work puts forward a novel approach based on elemental doping and vacancy engineering for the design of effective and enduring catalysts for water splitting.
Collapse
Affiliation(s)
- Longqian Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Heqiu Chen
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yinze Yang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
2
|
Wang M, Zhou Q, Xu Z, Zhang GP. Azaindole: A Candidate Anchor for Regulating Charge Polarity and Inducing Resonance Transmission at the Fermi Level via Dehydrogenation. J Phys Chem A 2024; 128:9861-9868. [PMID: 39540284 DOI: 10.1021/acs.jpca.4c05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Tuning the polarity of charge carriers is essential for designing molecular logic devices in molecular electronics. In this study, the electrical transport properties of a family of azaindole-anchored single-molecule junctions have been investigated using density functional theory combined with the nonequilibrium Green's function method. The obtained results reveal that dehydrogenation is an effective method for reversing the polarity of charge carriers. The molecular junctions based on the entire azaindole unit are n-type and contain electrons as the principal charge carriers, whereas the dehydrogenated junctions are p-type and contain holes as the main carriers. Furthermore, the azaindole anchors undergo a transition from an electron-rich to an electron-deficient state due to dehydrogenation, which is the original cause of the charge carrier polarity conversion. Dehydrogenated molecular junctions also exhibit the Fermi pinning effect and a sharp highest occupied molecular orbital (HOMO) resonance peak at the Fermi level. In addition, using Pt electrodes instead of Au electrodes is a means of producing a HOMO resonance peak a for azaindole-based molecular junctions. This work demonstrates the enormous potential of utilizing azaindole-anchored molecular junctions for the implementation of molecular logic and multifunctional molecular devices.
Collapse
Affiliation(s)
- Minglang Wang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Qi Zhou
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Zirui Xu
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Guang-Ping Zhang
- Shandong Key Laboratory of Medical Physics and Image Processing & Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| |
Collapse
|
3
|
Wang L, Wang P, Xue X, Wang D, Shang H, Zhao Y, Zhang B. Interface engineering of three-phase nickel-cobalt sulfide/nickel phosphide/iron phosphide heterostructure for enhanced water splitting and urea electrolysis. J Colloid Interface Sci 2024; 665:88-99. [PMID: 38518423 DOI: 10.1016/j.jcis.2024.03.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
Rational designing efficient transition metal-based multifunctional electrocatalysts is highly desirable for improving the efficiency of hydrogen production from water cracking. Herein, a self-supported three-phase heterostructure electrocatalyst of nickel-cobalt sulfide/nickel phosphide/iron phosphide (CoNi5S8-Ni2P-FeP2) was prepared by a two-step gas-phase sulfurization/phosphorization strategy. The heterostructure in CoNi5S8-Ni2P-FeP2 provides a favorable interfacial environment for electron transfer and synergistic interaction of multiphase active components, while the introduced electronegative P/S not only serves as a carrier for proton capture in the hydrogen evolution reaction (HER) process but also promotes the metal-electron outflow, which in turn accelerates the generation of high-valent Ni3+ species to enhance the catalytic activity of oxygen evolution reaction (OER) and urea oxidation reaction (UOR). As expected, CoNi5S8-Ni2P-FeP2 reveals excellent multifunctional electrocatalytic properties. An overpotential of 35/215 mV is required to reach 10 mA cm-2 for HER/OER. More encouragingly, a current of 100 mA cm-2 requires only 1.36 V for UOR with CoNi5S8-Ni2P-FeP2 as anode, which is much lower as compared to the OER (1.50 V). Besides, a two-electrode water/urea electrolyzer assembled based on CoNi5S8-Ni2P-FeP2 has a voltage of only 1.59/1.48 V when the system reaches 50 mA cm-2. This work provides a new idea for the design of energy-efficient water/urea-assisted water-splitting multifunctional catalysts with multi-component heterostructure synergistic interface engineering.
Collapse
Affiliation(s)
- Longqian Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Pan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xin Xue
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Dan Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Huishan Shang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yafei Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Bing Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|
4
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Lin S, Habib MA, Joni MH, Dristy SA, Mandavkar R, Jeong JH, Chung YU, Lee J. CoFeBP Micro Flowers (MFs) for Highly Efficient Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:698. [PMID: 38668192 PMCID: PMC11053626 DOI: 10.3390/nano14080698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Hydrogen is one of the most promising green energy alternatives due to its high gravimetric energy density, zero-carbon emissions, and other advantages. In this work, a CoFeBP micro-flower (MF) electrocatalyst is fabricated as an advanced water-splitting electrocatalyst by a hydrothermal approach for hydrogen production with the highly efficient hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The fabrication process of the CoFeBP MF electrocatalyst is systematically optimized by thorough investigations on various hydrothermal synthesis and post-annealing parameters. The best optimized CoFeBP MF electrode demonstrates HER/OER overpotentials of 20 mV and 219 mV at 20 mA/cm2. The CoFeBP MFs also exhibit a low 2-electrode (2-E) cell voltage of 1.60 V at 50 mA/cm2, which is comparable to the benchmark electrodes of Pt/C and RuO2. The CoFeBP MFs demonstrate excellent 2-E stability of over 100 h operation under harsh industrial operational conditions at 60 °C in 6 M KOH at a high current density of 1000 mA/cm2. The flower-like morphology can offer a largely increased electrochemical active surface area (ECSA), and systematic post-annealing can lead to improved crystallinity in CoFeBP MFs.
Collapse
Affiliation(s)
| | | | | | | | | | - Jae-Hun Jeong
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| | - Young-Uk Chung
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| | - Jihoon Lee
- Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea; (S.L.); (M.A.H.); (M.H.J.); (S.A.D.); (R.M.)
| |
Collapse
|
6
|
Xu W, Zhang JP, Tang XQ, Yang X, Han YW, Lan MJ, Tang X, Shen Y. Highly efficient sulfur-doped Ni 3Fe electrocatalysts for overall water splitting: Rapid synthesis, mechanism and driven by sustainable energy. J Colloid Interface Sci 2024; 653:1423-1431. [PMID: 37804611 DOI: 10.1016/j.jcis.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Designing efficient electrocatalysts and insight into their electrocatalytic mechanisms are significantly important for storing and converting the intermittent sustainable energy sources into clean hydrogen. In this study, we synthesize the bifunctional sulfur-doped Ni3Fe (NiFeS) electrocatalysts by a simple electrodeposition method only taking 30 s. After optimizing the components, it was found that the synthesized NiFeS electrocatalysts exhibit the excellent hydrogen and oxygen evolution reaction performances in 1.0 M potassium hydroxide solution. The results of experimental and theoretical calculations reveal that the introduced sulfur could optimize the electronic distribution, which make Ni electron-rich and Fe electron-deficient, thereby weakening the energy barriers of potential-determining steps, i.e. the absorption of H2O molecule on Ni sites for HER and formation of *OOH on Fe sites for OER, respectively. Besides, the NiFeS electrocatalysts are used as the bifunctional electrodes to water splitting, which only need 1.51 V to reach 10 mA·cm-2, and exhibits excellent durability and a >95% Faraday efficiency. Furthermore, the intermittent kinetic, wind and solar energies are used to power the assembled electrolyzer with NiFeS bi-electrodes to verify their great application potential. This work not only proved a deep insight into mechanism of the boosted electrocatalytic activities of NiFeS, but also the synthesized NiFeS electrocatalysts have great application prospect in the conversion of intermittent and sustainable energy sources into hydrogen by water electrocatalysis.
Collapse
Affiliation(s)
- Wei Xu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| | - Jun-Peng Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xian-Qing Tang
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xu Yang
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yi-Wen Han
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ming-Jian Lan
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xin Tang
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| |
Collapse
|
7
|
Makabu CM, Tian S, Kalau MK, Gong Z, Niu W, Wu C, Li J. Nanoflower-like FeVNi 3S 2-xas efficient electrocatalyst for alkaline oxygen evolution reaction. NANOTECHNOLOGY 2023; 34:455402. [PMID: 37524070 DOI: 10.1088/1361-6528/acebf2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 07/31/2023] [Indexed: 08/02/2023]
Abstract
The development of low cost efficient catalysts for oxygen evolution reaction (OER) is still a obstacle to realize the commercialization of electrocatalytic water splitting. Herein, interface engineering and heteroatom doping is adopted to synthesize iron and vanadium doped nickel sulfide on nickel foam via hydrothermal method followed by hydrogen treatment to create sulfur defects. The optimized nanoflower-like FeVNi3S2-x/NF is an efficient OER electrocatalyst that outperforms many of the reported transition metals catalysts. Benefiting from abundant sulfur defects and the synergistic effect of heteroatom doping, FeVNi3S2-x/NF exhibits an ultralow overpotential of 230 mV to reach a current density of 100 mA cm-2, a rapid reaction kinetics with a small Tafel slope of 46.6 mV dec-1, and a stable long-term durability in 1 M KOH. Experimental results and characterizations confirm that sulfur vacancies together with the synergistic effect from multiple heteroatom doping can effectively regulate the electronic structure, resulting in increased electrical conductivity and electrochemically active surface area, thus enhancing OER performance. Furthermore,in situRaman spectroscopy reveals that, the reconstitution amorphous nickel oxyhydroxide (NiOOH) on the catalyst surface is responsible for catalyzing the OER reaction. This work represents a promising methodology to synthesize low-cost and highly active OER electrocatalysts.
Collapse
Affiliation(s)
- Cynthia Mulanga Makabu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Shengnan Tian
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Marc Kalamb Kalau
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Zizhen Gong
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weixing Niu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Changcheng Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
8
|
Li J, Wei Q, Alomar M, Zhang J, Yang S, Xu X, Lao X, Lan M, Shen Y, Xiao J, Tu Z. Rational Design of Trimetallic Sulfide Electrodes for Alkaline Water Electrolysis with Ampere-Level Current Density. CHEMSUSCHEM 2023; 16:e202300308. [PMID: 37121888 DOI: 10.1002/cssc.202300308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/28/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical water splitting is considered an environmentally friendly approach to hydrogen generation. However, it is difficult to achieve high current density and stability. Herein, we design an amorphous/crystalline heterostructure electrode based on trimetallic sulfide over nickel mesh substrate (NiFeMoS/NM), which only needs low overpotentials of 352 mV, 249 mV, and 360 mV to achieve an anodic oxygen evolution reaction (OER) current density of 1 A cm-2 in 1 M KOH, strong alkaline electrolyte (7.6 M KOH), and alkaline-simulated seawater, respectively. More importantly, it also shows superior stability with negligible decay after continuous work for 120 h at 1 A cm-2 in the strong alkaline electrolyte. The excellent OER performance of the as-obtained electrode can be attributed to the strong electronic interactions between different metal atoms, abundant amorphous/crystalline hetero-interfaces, and 3D porous nickel mesh structure. Finally, we coupled NiFeMoS/NM as both the anode and cathode in the anion exchange membrane electrolyzer, which can achieve low cell voltage and high stability at ampere-level current density, demonstrating the great potential of practicability.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Qing Wei
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Muneerah Alomar
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box, 84428, Riyadh 11671, Saudi Arabia
| | - Jian Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shengxiong Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaoyang Xu
- National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen, 333000, P. R. China
| | - Xinbin Lao
- National Engineering Research Center for Domestic and Building Ceramics, Jingdezhen Ceramic Institute, Jingdezhen, 333000, P. R. China
| | - Minqiu Lan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yuhan Shen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430074, P. R. China
| | - Junwu Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zhengkai Tu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
9
|
Li J, Hu Y, Huang X, Zhu Y, Wang D. Bimetallic Phosphide Heterostructure Coupled with Ultrathin Carbon Layer Boosting Overall Alkaline Water and Seawater Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206533. [PMID: 36793256 DOI: 10.1002/smll.202206533] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/26/2022] [Indexed: 05/18/2023]
Abstract
Seawater electrolysis is promising for green hydrogen production but hindered by the sluggish reaction kinetics of both cathode and anode, as well as the detrimental chlorine chemistry environment. Herein, a self-supported bimetallic phosphide heterostructure electrode strongly coupled with an ultrathin carbon layer on Fe foam (C@CoP-FeP/FF) is constructed. When used as an electrode for the hydrogen and oxygen evolution reactions (HER/OER) in simulated seawater, the C@CoP-FeP/FF electrode shows overpotentials of 192 mV and 297 mV at 100 mA cm-2 , respectively. Moreover, the C@CoP-FeP/FF electrode enables the overall simulated seawater splitting at the cell voltage of 1.73 V to achieve 100 mA cm-2 , and operate stably during 100 h. The superior overall water and seawater splitting properties can be ascribed to the integrated architecture of CoP-FeP heterostructure, strongly coupled carbon protective layer, and self-supported porous current collector. The unique composites can not only provide enriched active sites, ensure prominent intrinsic activity, but also accelerate the electron transfer and mass diffusion. This work confirms the feasibility of an integration strategy for the manufacturing of a promising bifunctional electrode for water and seawater splitting.
Collapse
Affiliation(s)
- Jingwen Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Yezhou Hu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hongkong, 999007, P. R. China
| | - Xiao Huang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hongkong, 999007, P. R. China
| | - Deli Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
10
|
Pan M, Zhang X, Pan C, Wang J, Pan B. Identification of Co-O-Mo Active Centers on Co-Doped MoS 2 Electrocatalyst. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19695-19704. [PMID: 37018478 DOI: 10.1021/acsami.3c01281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Strategies for harmonizing the construction of an active site and the building of electron transport for a hybrid MoS2 catalyst are crucial for its application in electrochemical reactions. In this work, an accurate and facile hydrothermal strategy was proposed to fabricate the active center of Co-O-Mo on a supported MoS2 catalyst by forming a CoMoSO phase on the edge of MoS2, yielding (Co-O)x-MoSy (x = 0, 0.3, 0.6, 1, 1.5, or 2.1). The results show that the electrochemical performances (hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and electrochemical degradation) of the yielded MoS2-based catalysts were positively correlated with the Co-O bonds, verifying the significant role of Co-O-Mo as the active center. The fabricated (Co-O)-MoS0.9 presented an extremely low overpotential and Tafel slope in both HER and OER, and it also demonstrated excellent BPA removal in the electrochemical degradation reaction. As compared with the Co-Mo-S configuration, the configuration of Co-O-Mo not only serves as the active center but also provides a conducting channel to facilitate electron conductivity with more accessible charge transfer at the electrode/electrolyte interface, which is favorable for electrocatalytic reaction. This work offers a new perspective for the active mechanism of metallic-heteroatom-dopant electrocatalysts and further boosts research on the development of noble/non-noble hybrid electrocatalysts in the future.
Collapse
Affiliation(s)
- Meilan Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xue Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Chenglei Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiong Wang
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 P. R. China
| | - Bingjun Pan
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
11
|
Nayem SA, Islam S, Aziz MA, Ahammad AS. Mechanistic insight into hydrothermally prepared molybdenum-based electrocatalyst for overall water splitting. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
12
|
Shen Y, Bo L, Zhang Y, Shi W, Xia L, Ji X, Guan X, Wang Y, Tong J. Simply constructing composite of highly dispersed Ag decorated porous nanosheets of CoO/CoP/Co2P with highly enhanced electrocatalytic activities for overall water splitting. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Deshmukh MA, Park SJ, Thorat HN, Bodkhe GA, Ramanavicius A, Ramanavicius S, Shirsat MD, Ha TJ. Advanced Energy Materials: Current Trends and Challenges in Electro- and Photo-Catalysts for H2O Splitting. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Lv H, Fu C, Fan J, Zhang Y, Hao W. Mild construction of robust FeS-based electrode for pH-universal hydrogen evolution at industrial current density. J Colloid Interface Sci 2022; 626:384-394. [DOI: 10.1016/j.jcis.2022.06.166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
15
|
Qu C, Cao J, Chen Y, Wei M, Liu X, Feng B, Jin S, Xu A, Jin D, Yang L. Hierarchical CoMoS 3.13/MoS 2 hollow nanosheet arrays as bifunctional electrocatalysts for overall water splitting. Dalton Trans 2022; 51:14590-14600. [PMID: 36082745 DOI: 10.1039/d2dt02312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hollow hetero-nanosheet arrays have attracted great attention due to their efficient catalytic abilities for water splitting. We successfully fabricated ZIF-67-derived hollow CoMoS3.13/MoS2 nanosheet arrays on carbon cloth in situ through a two-step heating-up hydrothermal method, in which the MoS2 nanosheets were suitably distributed on the surface of the hollow CoMoS3.13 nanosheet arrays. There was a distinct synergistic effect between CoMoS3.13 and MoS2, and a large number of defective and disordered interfaces were formed, which improved the charge transfer rate and provided abundant electrochemical active sites. CMM 0.5, with the optimal Mo doping concentration of 0.5 mmol, exhibited the best catalytic properties. The overpotential values of CMM 0.5 at 10 mA cm-2 were only 107 and 169 mV for the HER and OER, respectively, and it had nearly 100% faradaic efficiency. A dual-electrode electrolytic cell assembled with CMM 0.5 required a voltage of only 1.507 V at 10 mA cm-2 for overall water splitting, and it displayed remarkable long-term durable bifunctional stability.
Collapse
Affiliation(s)
- Chunhong Qu
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Jian Cao
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China.,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Yanli Chen
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Maobin Wei
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China
| | - Xiaoyan Liu
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| | - Bo Feng
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Shuting Jin
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Ao Xu
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Doudou Jin
- College of Physics, Jilin Normal University, Changchun 130103, PR China.
| | - Lili Yang
- College of Physics, Jilin Normal University, Changchun 130103, PR China. .,National Demonstration Center for Experimental Physics Education, Jilin Normal University, Siping 136000, PR China.,Key Laboratory of Preparation and Application of Environmental Friendly Materials Ministry of Education, Jilin Normal University, Changchun, 130103, PR China
| |
Collapse
|
16
|
Peng Q, Zhuang X, Wei L, Shi L, Isimjan TT, Hou R, Yang X. Niobium-Incorporated CoSe 2 Nanothorns with Electronic Structural Alterations for Efficient Alkaline Oxygen Evolution Reaction at High Current Density. CHEMSUSCHEM 2022; 15:e202200827. [PMID: 35704336 DOI: 10.1002/cssc.202200827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Developing cost-effective, highly active, and robust electrocatalysts for oxygen evolution reaction (OER) at high current density is a critical challenge in water electrolysis since the sluggish kinetics of the OER significantly impedes the energy conversion efficiency of overall water splitting. Here, a 1D nanothorn-like Nb-CoSe2 /CC (CC=carbon cloth) structure was developed as an efficient OER catalyst. The optimized Nb-CoSe2 /CC catalyst exhibited remarkable OER performance with the low overpotentials of 220 mV at 10 mA cm-2 and 297 mV 200 mA cm-2 and a small Tafel slope (54.1 mV dec-1 ) in 1.0 m KOH electrolyte. More importantly, the Nb-CoSe2 /CC electrode displayed superior stability after 60 h of continuous operation. In addition, cell voltages of 1.52 and 1.93 V were required to achieve 10 and 500 mA cm-2 for the electrolyzer made of Nb-CoSe2 /CC (anode) and the Pt/C (cathode). Density functional theory (DFT) calculations combined with experimental results revealed that incorporating niobium into the CoSe2 could optimize the adsorption free energy of the reaction intermediates and enhance the conductivity to improve the catalytic activity further. Additionally, the super-hydrophilicity of Nb-CoSe2 /CC resulting from the surface defects increased the surface wettability and facilitated reaction kinetics. These results indicate that Nb-CoSe2 /CC intrinsically enhances OER performance and possesses potential practical water electrolysis applications.
Collapse
Affiliation(s)
- Qimin Peng
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiaoling Zhuang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Longgui Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Luyan Shi
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Ruobing Hou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
17
|
Interface engineering of nickel Hydroxide-Molybdenum diselenide nanosheet heterostructure arrays for efficient alkaline hydrogen production. J Colloid Interface Sci 2022; 614:267-276. [DOI: 10.1016/j.jcis.2022.01.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/30/2021] [Accepted: 01/19/2022] [Indexed: 12/19/2022]
|
18
|
Cui X, Sun Y, Xu X. Polyoxometalate derived p-n heterojunction for optimized reaction interface and improved HER. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Ge L, Lai W, Deng Y, Bao J, Ouyang B, Li H. Spontaneous Dissolution of Oxometalates Boosting the Surface Reconstruction of CoMOx (M = Mo, V) to Achieve Efficient Overall Water Splitting in Alkaline Media. Inorg Chem 2022; 61:2619-2627. [DOI: 10.1021/acs.inorgchem.1c03677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Wei Lai
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jian Bao
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|