1
|
Ran T, Ji C, Zhang Q, Wang S, Zhang Y, Niu W, Wei T, Shi Y. Advanced treatment and reuse of dye wastewater using thermo-irreversible on/off switch starch with disruption of dissolution/precipitation dynamic equilibrium. Carbohydr Polym 2024; 342:122425. [PMID: 39048208 DOI: 10.1016/j.carbpol.2024.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
The development of irreversible on/off switching materials is a potential strategy for unidirectional capture and encapsulation of pollutants, preventing the pollutant leakage problem resulting from the reversible dissolution of flocculants. Herein, a thermo-irreversible on/off switch starch (TISS) is prepared through modifying starch by etherification grafting glycidyl phenyl ether and 2,4-bis(dimethylamino)-6-chloro-[1,3,5]-triazine. It breaks the dissolution/precipitation dynamic equilibrium across heating-cooling cycles by thermal-induced irreversible coil-to-globule self-assembly of polymer chains, resulting in a 50-fold decrease in polymer solubility. Particularly, TISS shows a superior double-locking effect on pollutants and flocculants through its unique irreversible conformation memory capability, leading to a high-quality reuse water. 99.9 % of reactive brilliant red dye and 97.9 % of TISS remain fixed within sludge flocs even after prolonged immersion in cold water at 24 °C for 60 days. Furthermore, direct recycling and reuse of dye-bath energy can be realized through the isothermal flocculation and dyeing method, showing a 75 % decrease in energy consumption after three cycles compared to traditional dyeing techniques. This work presents a novel approach to constructing an irreversible pollutant delivery system using thermo-irreversible on/off switch starch, addressing the problems of high energy dissipation and water quality fluctuations during wastewater treatment.
Collapse
Affiliation(s)
- Tingmin Ran
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Qi Zhang
- Xinjiang Shenbang Environmental Engineering Co., Ltd, Shihezi 832000, China
| | - Shengxin Wang
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China
| | - Yanxue Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, West Campus, 2 Linggong Rd., Dalian 116024, China
| | - Tingting Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Yulin Shi
- State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832000, China; State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
2
|
Yang Y, Chen S, Zhang M, Shi Y, Luo J, Huang Y, Gu Z, Hu W, Zhang Y, He X, Yu C. Mesoporous nanoperforators as membranolytic agents via nano- and molecular-scale multi-patterning. Nat Commun 2024; 15:1891. [PMID: 38424084 PMCID: PMC10904871 DOI: 10.1038/s41467-024-46189-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Plasma membrane lysis is an effective anticancer strategy, which mostly relying on soluble molecular membranolytic agents. However, nanomaterial-based membranolytic agents has been largely unexplored. Herein, we introduce a mesoporous membranolytic nanoperforators (MLNPs) via a nano- and molecular-scale multi-patterning strategy, featuring a spiky surface topography (nanoscale patterning) and molecular-level periodicity in the spikes with a benzene-bridged organosilica composition (molecular-scale patterning), which cooperatively endow an intrinsic membranolytic activity. Computational modelling reveals a nanospike-mediated multivalent perforation behaviour, i.e., multiple spikes induce nonlinearly enlarged membrane pores compared to a single spike, and that benzene groups aligned parallelly to a phospholipid molecule show considerably higher binding energy than other alignments, underpinning the importance of molecular ordering in phospholipid extraction for membranolysis. Finally, the antitumour activity of MLNPs is demonstrated in female Balb/c mouse models. This work demonstrates assembly of organosilica based bioactive nanostructures, enabling new understandings on nano-/molecular patterns co-governed nano-bio interaction.
Collapse
Affiliation(s)
- Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, China.
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- South Australian immunoGENomics Cancer Institute, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Shiwei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Min Zhang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China.
| | - Yiru Shi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jiangqi Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yiming Huang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200092, China
| | - Zhengying Gu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Wenli Hu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Ye Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200062, China.
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
3
|
Ma E, Fu Z, Sun L, Chen K, Liu Z, Wei Z, Li L, Guo X. Organosilica-based deformable nanopesticides with enhanced insecticidal activity prepared by flash nanoprecipitation. REACT CHEM ENG 2023. [DOI: 10.1039/d3re00040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
A flash nanoprecipitation technique was developed for the construction of a novel type of deformable hollow organosilica nanoparticle for pesticide delivery.
Collapse
Affiliation(s)
- Enguang Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhinan Fu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Liang Sun
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Kai Chen
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Zhong Wei
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, 832000 Xinjiang, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, 200237 Shanghai, P.R. China
| |
Collapse
|