Gholipur R, Khosravi S. Structural, Magnetic, and Electrical Investigations of PVA/Ni Ferrite/(MoS
2)
x Nanocomposites.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024;
40:2288-2300. [PMID:
38239084 DOI:
10.1021/acs.langmuir.3c03425]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Transition metal sulfides (TMDs) possess exceptional dielectric properties and a narrow band gap, rendering them highly efficient as electromagnetic absorbing materials. Among these TMDs, the two-dimensional MoS2 nanosheet has received significant attention in research. However, the quest for new absorbers no longer finds satisfaction in solitary absorption mechanisms. This article introduces a successful method for creating PVA/NiFe2O4/(MoS2)x nanocomposites via a straightforward sol-gel technique, wherein porous amorphous NiFe2O4 microspheres are integrated into MoS2 nanosheets. The investigation uncovers that the incorporation of MoS2 results in an enhanced complex permittivity, facilitating the attainment of a desirable permittivity level. The PVA/NiFe2O4/(MoS2)x nanocomposite absorber exhibits an incredibly low reflection loss (RL) of -16.75 dB at a mere thickness of 1 mm, achieved through the cooperative interaction of dielectric and magnetic loss, along with the advantages of the structure and composition. Consequently, the PVA/NiFe2O4/(MoS2)x nanocomposites effectively absorb electromagnetic waves. Therefore, it is posited that MoS2-based composites hold great promise as highly effective microwave absorbers, boasting strong absorption intensity and a wide absorption frequency range, given the exceptional performance of the as-fabricated PVA/NiFe2O4/(MoS2)x nanocomposites.
Collapse