1
|
Josyula T, Kumar Malla L, Thomas TM, Kalichetty SS, Sinha Mahapatra P, Pattamatta A. Fundamentals and Applications of Surface Wetting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8293-8326. [PMID: 38587490 DOI: 10.1021/acs.langmuir.3c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In an era defined by an insatiable thirst for sustainable energy solutions, responsible water management, and cutting-edge lab-on-a-chip diagnostics, surface wettability plays a pivotal role in these fields. The seamless integration of fundamental research and the following demonstration of applications on these groundbreaking technologies hinges on manipulating fluid through surface wettability, significantly optimizing performance, enhancing efficiency, and advancing overall sustainability. This Review explores the behavior of liquids when they engage with engineered surfaces, delving into the far-reaching implications of these interactions in various applications. Specifically, we explore surface wetting, dissecting it into three distinctive facets. First, we delve into the fundamental principles that underpin surface wetting. Next, we navigate the intricate liquid-surface interactions, unraveling the complex interplay of various fluid dynamics, as well as heat- and mass-transport mechanisms. Finally, we report on the practical realm, where we scrutinize the myriad applications of these principles in everyday processes and real-world scenarios.
Collapse
Affiliation(s)
- Tejaswi Josyula
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Laxman Kumar Malla
- School of Mechanical Sciences, Odisha University of Technology and Research, Bhubaneswar 751029, India
| | - Tibin M Thomas
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | | | - Pallab Sinha Mahapatra
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Arvind Pattamatta
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
2
|
Liu L, Lei L. Contact Angle on Rough Curved Surfaces and Its Implications in Porous Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4507-4517. [PMID: 36930807 DOI: 10.1021/acs.langmuir.3c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The equilibrium contact angle depends on both the chemistry of the two fluids and solid base and the microstructure on the solid surface. Actual surface of the pore wall in porous media is typically rough and curved, which has not been well-considered in related applications. This work uses a free interfacial energy minimization approach to theoretically derive the equilibrium contact angle on two specific surface structures on flat surfaces and extends the derivation considering the surface curvatures in porous media. Results reveal that the equilibrium contact angle is not dependent on the curvature of spherical surfaces, and we further prove that this conclusion applies to any point along the apparent common line at solid surfaces with any arbitrary curvature. The fundamental physics is the local mechanical balance of a composite contact among three interfacial tensions. Furthermore, the contacting mode can shift from non-wetting to wetting when the pressure difference between two fluids exceeds the entry pressure of the microstructures, which should be considered in relative dynamic scenarios such as rain droplet impact and fluid displacement in porous media. Note that these conclusions are from pure theoretical analysis based on idealistic assumptions, and real circumstances may deviate from these assumptions.
Collapse
Affiliation(s)
- Lei Liu
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Liang Lei
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
3
|
Dynamic wetting of various liquids: Theoretical models, experiments, simulations and applications. Adv Colloid Interface Sci 2023; 313:102861. [PMID: 36842344 DOI: 10.1016/j.cis.2023.102861] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023]
Abstract
Dynamic wetting is a ubiquitous phenomenon and frequently observed in our daily life, as exemplified by the famous lotus effect. It is also an interfacial process of upmost importance involving many cutting-edge applications and has hence received significantly increasing academic and industrial attention for several decades. However, we are still far away to completely understand and predict wetting dynamics for a given system due to the complexity of this dynamic process. The physics of moving contact lines is mainly ascribed to the full coupling with the solid surface on which the liquids contact, the atmosphere surrounding the liquids, and the physico-chemical characteristics of the liquids involved (small-molecule liquids, metal liquids, polymer liquids, and simulated liquids). Therefore, to deepen the understanding and efficiently harness wetting dynamics, we propose to review the major advances in the available literature. After an introduction providing a concise and general background on dynamic wetting, the main theories are presented and critically compared. Next, the dynamic wetting of various liquids ranging from small-molecule liquids to simulated liquids are systematically summarized, in which the new physical concepts (such as surface segregation, contact line fluctuations, etc.) are particularly highlighted. Subsequently, the related emerging applications are briefly presented in this review. Finally, some tentative suggestions and challenges are proposed with the aim to guide future developments.
Collapse
|
4
|
Wang F, Wu Y, Nestler B. Wetting Effect on Patterned Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2210745. [PMID: 36779433 DOI: 10.1002/adma.202210745] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/01/2023] [Indexed: 05/10/2023]
Abstract
A droplet deposited on a solid substrate leads to the wetting phenomenon. A natural observation is the lotus effect, known for its superhydrophobicity. This special feature is engendered by the structured microstructure of the lotus leaf, namely, surface heterogeneity, as explained by the quintessential Cassie-Wenzel theory (CWT). In this work, recent designs of functional substrates are overviewed based on the CWT via manipulating the contact area between the liquid and the solid substrate as well as the intrinsic Young's contact angle. Moreover, the limitation of the CWT is discussed. When the droplet size is comparable to the surface heterogeneity, anisotropic wetting morphology often appears, which is beyond the scope of the Cassie-Wenzel work. In this case, several recent studies addressing the anisotropic wetting effect on chemically and mechanically patterned substrates are elucidated. Surface designs for anisotropic wetting morphologies are summarized with respect to the shape and the arrangement of the surface heterogeneity, the droplet volume, the deposition position of the droplet, as well as the mean curvature of the surface heterogeneity. A thermodynamic interpretation for the wetting effect and the corresponding open questions are presented at the end.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Yanchen Wu
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
| | - Britta Nestler
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131, Karlsruhe, Germany
- Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133, Karlsruhe, Germany
| |
Collapse
|
5
|
Lei W, Lu X, Wang M. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Adv Colloid Interface Sci 2023; 311:102826. [PMID: 36528919 DOI: 10.1016/j.cis.2022.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Multiphase displacement in porous media can be adjusted by micro/nanoparticle suspensions, which is widespread in many scientific and industrial contexts. Direct visualization of suspension flow dynamics and corresponding multiphase patterns is crucial to understanding displacement mechanisms and eventually optimizing these processes in geological, biological, chemical, and other engineering systems. However, suspension flow inside the opaque realistic porous media makes direct observation challenging. The advances in microfluidic experiments have provided us with alternative methods to observe suspension influence on the interface and multiphase flow behaviors at high temporal and spatial resolutions. Macroscale processes are controlled by microscale interfacial behaviors, which are affected by multiple physical factors, such as particle adsorption, capillarity, and hydrodynamics. These properties exerted on the suspension flow in porous media may lead to interesting interfacial phenomena and new displacement consequences. As an underpinning science, understanding and controlling the suspension transport process from interface to flow patterns in porous media is critical for a lower operating cost to improve resource production while reducing harmful emissions and other environmental impacts. This review summarizes the basic properties of different micro/nanoparticle suspensions and the state-of-the-art microfluidic techniques for displacement research activities in porous media. Various suspension transport behaviors and displacement mechanisms explored by microfluidic experiments are comprehensively reviewed. This review is expected to boost both experimental and theoretical understanding of suspension transport and interfacial interaction processes in porous media. It also brings forward the challenges and opportunities for future research in controlling complex fluid flow in porous media for diverse applications.
Collapse
Affiliation(s)
- Wenhai Lei
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xukang Lu
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Moran Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Santos JE, Chang B, Gigliotti A, Yin Y, Song W, Prodanović M, Kang Q, Lubbers N, Viswanathan H. A Dataset of 3D Structural and Simulated Transport Properties of Complex Porous Media. Sci Data 2022; 9:579. [PMID: 36192410 PMCID: PMC9530238 DOI: 10.1038/s41597-022-01664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/24/2022] [Indexed: 11/09/2022] Open
Abstract
Physical processes that occur within porous materials have wide-ranging applications including - but not limited to - carbon sequestration, battery technology, membranes, oil and gas, geothermal energy, nuclear waste disposal, water resource management. The equations that describe these physical processes have been studied extensively; however, approximating them numerically requires immense computational resources due to the complex behavior that arises from the geometrically-intricate solid boundary conditions in porous materials. Here, we introduce a new dataset of unprecedented scale and breadth, DRP-372: a catalog of 3D geometries, simulation results, and structural properties of samples hosted on the Digital Rocks Portal. The dataset includes 1736 flow and electrical simulation results on 217 samples, which required more than 500 core years of computation. This data can be used for many purposes, such as constructing empirical models, validating new simulation codes, and developing machine learning algorithms that closely match the extensive purely-physical simulation. This article offers a detailed description of the contents of the dataset including the data collection, simulation schemes, and data validation.
Collapse
Affiliation(s)
| | | | | | - Ying Yin
- Xii'an Jiaotong University, Xi'an, China
| | - Wenhui Song
- China University of Petroleum, East China, Dongying, China
| | | | - Qinjun Kang
- Los Alamos National Laboratory, Los Alamos, USA
| | | | | |
Collapse
|
7
|
Jiang G, Tian Z, Wang L, Luo X, Chen C, Hu X, Peng R, Zhang H, Zhong M. Anisotropic Hemiwicking Behavior on Laser Structured Prismatic Microgrooves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6665-6675. [PMID: 35578803 DOI: 10.1021/acs.langmuir.2c00568] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The wicking phenomenon, including wicking and hemiwicking, has attracted increasing attention for its critical importance to a wide range of engineering applications, such as thermal management, water harvesting, fuel cells, microfluidics, and biosciences. There exists a more urgent demand for anisotropic wicking behaviors since an increasing number of advanced applications are significantly complex. For example, special-shaped vapor chambers and heating atomizers in some electronic cigarettes need liquid replenishing with various velocities in different directions. Here, we report two-dimensional anisotropic hemiwicking behaviors with elliptical shapes on laser structured prismatic microgrooves. The prismatic microgrooves were fabricated via one-step femtosecond laser direct writing, and the anisotropic hemiwicking behaviors were observed when utilizing glycerol, glycol, and water as the test liquid. Specifically, the ratios of horizontal wicking distance in directions along short and long axes were tan 0°, tan 15°, tan 30°, and tan 45° for samples with cross-angles of 0°, 30°, 60°, and 90°, respectively. The vertical water wicking front displayed corresponding angles under the guidance of laser structured prismatic microgrooves. Theoretical analysis shows that the wicking distance is mainly dependent on the cross-angle θ and surface roughness, in which the wicking distance is proportional to cos(θ/2). Driven by the capillary pressure forming in the narrow microgrooves, the liquid initially filled the valleys of microgrooves and then surrounded and covered the prismatic ridges with laser-induced nanoparticles. The abundant nanoparticles increased the surface roughness, leading to the enhancement of wicking performance, which was further evidenced by the larger wicking speed of the sample with more nanoparticles. The mechanism of anisotropic hemiwicking behaviors revealed in this work paves the way for wicking control, and the proposed prismatic microgrooved surfaces with two-dimensional anisotropic hemiwicking performance and superhydrophilicity could serve in a broad range of applications, especially for the advanced thermal management with specific heat load configurations.
Collapse
Affiliation(s)
- Guochen Jiang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Ze Tian
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Lizhong Wang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Xiao Luo
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Changhao Chen
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Xinyu Hu
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Rui Peng
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Hongjun Zhang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Characterization of Two-Phase Flow from Pore-Scale Imaging Using Fractal Geometry under Water-Wet and Mixed-Wet Conditions. ENERGIES 2022. [DOI: 10.3390/en15062036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High resolution micro-computed tomography images for multiphase flow provide us an effective tool to understand the mechanism of fluid flow in porous media, which is not only fundamental to the understanding of macroscopic measurements but also for providing benchmark datasets to validate pore-scale modeling. In this study, we start from two datasets of pore scale imaging of two-phase flow obtained experimentally under in situ imaging conditions at different water fractional flows under water-wet and mixed-wet conditions. Then, fractal dimension, lacunarity and succolarity are used to quantify the complexity, clustering and flow capacity of water and oil phases. The results show that with the wettability of rock surface altered from water-wet to mixed-wet, the fractal dimension for the water phase increases while for the oil phase, it decreases obviously at low water saturation. Lacunarity largely depends on the degree of wettability alteration. The more uniform wetting surfaces are distributed, the more homogeneous the fluid configuration is, which indicates smaller values for lacunarity. Moreover, succolarity is shown to well characterize the wettability effect on flow capacity. The succolarity of the oil phase in the water-wet case is larger than that in the mixed-wet case while for the water phase, the succolarity value in the water-wet is small compared with that in the mixed-wet, which show a similar trend with relative permeability curves for water-wet and mixed-wet. Our study provides a perspective into the influence that phase geometry has on relative permeability under controlled wettability and the resulting phase fractal changes under different saturations that occur during multiphase flow, which allows a means to understand phase geometric changes that occur during fluid flow.
Collapse
|