1
|
Du Y, Zhang Y, Pu X, Fu X, Li X, Bai L, Chen Y, Qian J. Synthesis of bifunctional NiFe layered double hydroxides (LDH)/Mo-doped g-C 3N 4 electrocatalyst for efficient methanol oxidation and seawater splitting. CHEMOSPHERE 2023; 312:137203. [PMID: 36375606 DOI: 10.1016/j.chemosphere.2022.137203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
To boost the oxygen evolution reaction (OER) and methanol oxidation reaction (MOR) of pristine NiFe-layered double hydroxides (LDH), the NiFe-LDH/Mo-doped graphitic carbon nitride (NiFe-LDH/MoCN) heterojunction was synthesized herein through hydrothermal method. The establishment of built-in electric field in NiFe-LDH/MoCN heterojunction enhanced the electrochemical oxidation activities towards both seawater splitting and methanol oxidation, via the improving electrocatalyst surface wettability and conductivity. Almost 10-fold enhancement of turnover frequency (TOF) and electrochemical active surface area (ECSA) than pure NiFe-LDH implied more active sites to participate in catalytic reactions via Mo doping and the formation of heterostructure. Moreover, the local charge redistribution demonstrated in the NiFe-LDH/MoCN interface region may favor the adsorption of methanol and OH- in the seawater. The present work may expound the strong coupling interaction and the establishment of built-in electric field in the interface between NiFe-LDH and semiconductor to enhance both methanol oxidation and seawater oxidation for NiFe-LDH.
Collapse
Affiliation(s)
- Yufei Du
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yichu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Xunchi Pu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiaoying Fu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xuan Li
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia
| | - Linqin Bai
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Yongjun Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China
| | - Jin Qian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, PR China.
| |
Collapse
|
2
|
Enhanced photocatalytic activity for degradation of ofloxacin and dye by hierarchical flower-like ZnS/MoS2/Bi2WO6 heterojunction: Synergetic effect of 2D/2D coupling interface and solid sulfide solutions. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
3
|
Xue J, Li J, Gao J, Wang M, Ma S. CoFe2O4 functionalized PVDF membrane for synchronous oil/water separation and peroxomonosulfate activation toward aromatic pollutants degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Huang J, Li C, Hao H, Li L, Zhu B, Chen X, Tao H. Photocatalytic degradation of tetracycline antibiotic over a flower-like S-doped BiOBr: Performance, mechanism insight and toxicity assessment. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1023489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A new catalyst of S-BiOBr flower-like morphology was synthesized by simple pyrolysis and further used for photocatalytic degradation of TC. Phase structure analysis, elemental analysis and micromorphological analysis confirmed that S doping has a reinforcing effect on the polarization between the [Bi2O2S]2+ and [Br2]2- layers and is conducive to interlayer polarization and rapid charge transfer. In addition, its unique petal morphology is more favorable to the adsorption of contaminants on its surface and accelerates the reaction of catalyst surfactant with contaminants. It was also found that S-BiOBr degrades TC significantly better than single BiOBr@HCs, with up to 99.1% in 60 min illumination. In addition, the S-BiOBr catalyst has good reusability in antibiotic degradation. The results of photocatalytic mechanism analysis show that free radical O2− plays a major role in the photodegradation of organic model pollutants. Intermediates in TC degradation were identified, and their potential degradation pathways were prospected, and the toxicity development of TC in the degradation process was analyzed by toxicity assessment software. The S-BiOBr photocatalytic system developed in this paper provides a new idea for effective modification of bismuth-based semiconductors and has important guiding significance for future water purification.
Collapse
|
5
|
Pu Z, Xiao B, Mao S, Sun Y, Ma D, Wang H, Zhou J, Cheng Y, Shi JW. An electron-hole separation mechanism caused by the pseudo-gap formed at the interfacial Co-N bond between cobalt porphyrin metal organic framework and boron-doped g-C 3N 4 for boosting photocatalytic H 2 production. J Colloid Interface Sci 2022; 628:477-487. [PMID: 35998470 DOI: 10.1016/j.jcis.2022.08.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Photocatalytic hydrogen evolution from water splitting presents an attractive prospect in dealing with the energy crisis, but the low efficiency of charge separation and migration still seriously hinders its further practical application. Here, an acidified boron-doped g-C3N4 (HBCNN) and cobalt porphyrin metal organic frameworks (CoPMOF) self-assembled two-dimensional and two-dimensional (2D/2D) hybrid photocatalyst is fabricated successfully. The resultant HBCNN/CoPMOF with optimum ratio exhibits a superior H2 evolution rate of 33.17 mmol g-1 h-1, which is 3.04 and 100.50 times higher than the single HBCNN and CoPMOF, respectively. It is found that a coordination connection has formed between CoPMOF and HBCNN through Co-N bond, and the interfacial Co-N bond then forms a pseudo-gap in the up-spin channel of electronic states, establishing an electron-hole separation mechanism. It is this electron-hole separation mechanism that contributes to a Z-scheme transport mode of photogenerated carriers, which greatly promotes the photocatalytic H2 production performance of HBCNN/CoPMOF heterostructure. This work may provide an idea for the design of heterojunction to improve the photocatalytic performance by constructing electron-hole separation through interfacial bond.
Collapse
Affiliation(s)
- Zengxin Pu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bing Xiao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Siman Mao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yingxue Sun
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongkang Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|