1
|
Leo SY, Zhang Y, Jiang J, Lin N, Jiang P, Taylor C. Reconfigurable Antireflection Coatings Enabled by PDMS Oligomer Infusion in Templated Nanoporous Polymer Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57792-57803. [PMID: 39388478 DOI: 10.1021/acsami.4c15669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The diffusion of uncured polydimethylsiloxane (PDMS) oligomers out of bulk PDMS elastomers is usually detrimental to many biomedical and microfluidic applications due to the inevitable contamination of the contacting fluids and substrates. Here, we transform this detrimental process into an enabling technology for achieving novel reconfigurable antireflection (AR) coatings, which are of great technological importance in the development of new nano-optical and optoelectronic applications. Self-assembled monolayer silica colloidal crystals are first used as sacrificial templates in fabricating nanoporous polymer AR coatings. When air in the templated nanopores is replaced with infused PDMS oligomers simply by pressing a PDMS stamp on a nanoporous AR film, the original antireflection conditions are lost, and the coating transforms from a low-reflection configuration to a high-reflection state. The original antireflection performance can be fully recovered by dissolving the infused oligomers in the appropriate solvents (e.g., hexane). This novel tuning mechanism for achieving reconfigurable AR properties has been confirmed by systematic investigations using various microscopes, optical spectroscopy, nanoindentation, thermomechanical tests, and X-ray photoelectron spectroscopy. Complex micropatterns with micrometer-scale spatial resolution and drastically different AR performances can be easily printed on nanoporous AR films by using a soft lithography-based microcontact printing process. Numerical finite-difference time-domain simulations match well with experimental antireflection measurements and reveal a linear relationship between the optical transmission and the amount of infused PDMS oligomers in nanopores.
Collapse
Affiliation(s)
- Sin-Yen Leo
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Yifan Zhang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - James Jiang
- The Frazer School, Gainesville, Florida 32605, United States
| | - Nanqi Lin
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Peng Jiang
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Curtis Taylor
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Hu Z, Shang J, Wang P, Zhang L, Zhou J. Omnidirectional antireflective coatings prepared with chitin nanofibers via layer-by-layer self-assembly. J Colloid Interface Sci 2023; 650:676-685. [PMID: 37441961 DOI: 10.1016/j.jcis.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Antireflective coatings play an important role in various optical devices. Herein, we developed omnidirectional antireflective coatings fabricated with charged chitin nanofibers (ChNFs) through layer-by-layer (LbL) self-assembly technology. The charged ChNFs were prepared from chitin with modifications of esterification (negatively charged) and esterification followed partial deacetylation (positively charged), respectively, through ultrasonic treatment. The effects of concentration of the ChNF suspensions and number of bilayers on thickness, refractive index and antireflective capacity of the ChNF coatings were investigated. Refractive index of the ChNF coatings can be manipulated by changing concentration of the ChNF suspensions. Thickness of the ChNF coatings depends on number of bilayers and concentration of the ChNF suspensions. The ChNF coating on a glass substrate with 5 bilayers fabricated using the suspensions with concentration 0.1% had a refractive index of 1.36 and yielded 4% gain in transmittance compared to the glass at the wavelength of 550 nm. This work demonstrates that charged ChNFs are promising building blocks to fabricate antireflective coatings on large size substrates with high efficiency and low cost through LbL self-assembly.
Collapse
Affiliation(s)
- Zhiqing Hu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiaqi Shang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Peizhuang Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Li Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiang Zhou
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
3
|
Chiang KT, Lin SH, Ye YZ, Zeng BH, Cheng YL, Lee RH, Lin KYA, Yang H. Leafhopper-inspired reversibly switchable antireflection coating with sugar apple-like structure arrays. J Colloid Interface Sci 2023; 650:81-93. [PMID: 37393770 DOI: 10.1016/j.jcis.2023.06.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
Optical coatings with reversibly tunable antireflective characteristics hold a tremendous potential for next generation optical energy-related applications. Bioinpsired by the camouflage behavior of small yellow leafhoppers, silica hollow sphere/shape memory polymer composites are self-assembled using a non-lithography-based approach. The average visible transmittance of the as-patterned hierarchical structure array-covered substrate is increased by ca. 6.3% at normal incident, and even improved by more than 20% for an incident angle of 75°. Interestingly, the broadband omnidirectional antireflection performance can be reversibly erased and recovered by applying external stimuli under ambient conditions. To gain a better understanding, its reversibility, mechanical robustness, and the structure-shape effect on the antireflective properties are systematically investigated in this research.
Collapse
Affiliation(s)
- Kuan-Ting Chiang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Shin-Hua Lin
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Yu-Zhe Ye
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Bo-Han Zeng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Ya-Lien Cheng
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Rong-Ho Lee
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| | - Hongta Yang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung City 40227, Taiwan.
| |
Collapse
|
4
|
Ding Y, Liu L, Wang C, Li C, Lin N, Niu S, Han Z, Duan J. Bioinspired Near-Full Transmittance MgF 2 Window for Infrared Detection in Extremely Complex Environments. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37315329 DOI: 10.1021/acsami.3c04170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the extreme complexity of the anti-reflective subwavelength structure (ASS) parameters and the drastic limitation of Gaussian beam manufacturing accuracy, it remains a great challenge to manufacture ASS with ultrahigh transmittance on the surface of infrared window materials (such as magnesium fluoride (MgF2)) directly by femtosecond laser. Here, a design, manufacturing, and characterization method that can produce an ultrahigh-performance infrared window by femtosecond laser Bessel beam is proposed. Inspired by the excellent anti-reflective and hydrophobic properties of the special structure of dragonfly wings, a similar structural pattern with grid-distributed truncated cones is designed and optimized for its corresponding parameters to achieve near-full transmittance. The desired submicron structures are successfully fabricated by a Bessel beam after effectively shaping the beam. As a practical application, the bioinspired ASS is manufactured on the surface of MgF2, achieving an ultrahigh transmittance of 99.896% in the broadband of 3-5 μm, ultrawide angle of incidence (over 70% at 75° incidence), and good hydrophobicity with a water contact angle of 99.805°. Results from infrared thermal imaging experiments show that the ultrahigh-transmittance MgF2 window has superior image acquisition and anti-interference performance (3.9-8.6% image contrast enhancement and more accurate image edge recognition) in an environment with multiple interfering factors, which may play a significant role in facilitating applications of infrared thermal imaging technologies in extremely complex environments.
Collapse
Affiliation(s)
- Yulong Ding
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Linpeng Liu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Cong Wang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Cheng Li
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Nai Lin
- The 10th Research Institute of CETC, Chengdu, Sichuan 610036, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, Changchun 130022, China
| | - Ji'an Duan
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
5
|
Schmelz D, Jia G, Käsebier T, Plentz J, Zeitner UD. Antireflection Structures for VIS and NIR on Arbitrarily Shaped Fused Silica Substrates with Colloidal Polystyrene Nanosphere Lithography. MICROMACHINES 2023; 14:1204. [PMID: 37374789 DOI: 10.3390/mi14061204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023]
Abstract
Antireflective (AR) nanostructures offer an effective, broadband alternative to conventional AR coatings that could be used even under extreme conditions. In this publication, a possible fabrication process based on colloidal polystyrene (PS) nanosphere lithography for the fabrication of such AR structures on arbitrarily shaped fused silica substrates is presented and evaluated. Special emphasis is placed on the involved manufacturing steps in order to be able to produce tailored and effective structures. An improved Langmuir-Blodgett self-assembly lithography technique enabled the deposition of 200 nm PS spheres on curved surfaces, independent of shape or material-specific characteristics such as hydrophobicity. The AR structures were fabricated on planar fused silica wafers and aspherical planoconvex lenses. Broadband AR structures with losses (reflection + transmissive scattering) of <1% per surface in the spectral range of 750-2000 nm were produced. At the best performance level, losses were less than 0.5%, which corresponds to an improvement factor of 6.7 compared to unstructured reference substrates.
Collapse
Affiliation(s)
- David Schmelz
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Guobin Jia
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
| | - Thomas Käsebier
- Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Jonathan Plentz
- Leibniz Institute of Photonic Technology (Leibniz-IPHT), 07745 Jena, Germany
| | - Uwe Detlef Zeitner
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, 07745 Jena, Germany
- Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences, 80335 Munich, Germany
| |
Collapse
|
6
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|