1
|
Zhang H, Wang Y, Qiang H, Leng D, Yang L, Hu X, Chen F, Zhang T, Gao J, Yu Z. Exploring the frontiers: The potential and challenges of bioactive scaffolds in osteosarcoma treatment and bone regeneration. Mater Today Bio 2024; 29:101276. [PMID: 39444939 PMCID: PMC11497376 DOI: 10.1016/j.mtbio.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
The standard treatment for osteosarcoma combines surgery with chemotherapy, yet it is fraught with challenges such as postoperative tumor recurrence and chemotherapy-induced side effects. Additionally, bone defects after surgery often surpass the body's regenerative ability, affecting patient recovery. Bioengineering offers a novel approach through the use of bioactive scaffolds crafted from metals, ceramics, and hydrogels for bone defect repair. However, these scaffolds are typically devoid of antitumor properties, necessitating the integration of therapeutic agents. The development of a multifunctional therapeutic platform incorporating chemotherapeutic drugs, photothermal agents (PTAs), photosensitizers (PIs), sound sensitizers (SSs), magnetic thermotherapeutic agents (MTAs), and naturally occurring antitumor compounds addresses this limitation. This platform is engineered to target osteosarcoma cells while also facilitating bone tissue repair and regeneration. This review synthesizes recent advancements in integrated bioactive scaffolds (IBSs), underscoring their dual role in combating osteosarcoma and enhancing bone regeneration. We also examine the current limitations of IBSs and propose future research trajectories to overcome these hurdles.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Wang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Huifen Qiang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Dewen Leng
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Luling Yang
- Digestive Endoscopy Center, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xueneng Hu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Feiyan Chen
- Department of Orthopedics, Huashan Hospital, Fudan University Shanghai, 201508, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200336, China
| | - Zuochong Yu
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| |
Collapse
|
2
|
Li X, Si Y, Liang J, Li M, Wang Z, Qin Y, Sun L. Enhancing bone regeneration and immunomodulation via gelatin methacryloyl hydrogel-encapsulated exosomes from osteogenic pre-differentiated mesenchymal stem cells. J Colloid Interface Sci 2024; 672:179-199. [PMID: 38838627 DOI: 10.1016/j.jcis.2024.05.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/07/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as promising candidates for cell-free therapy in tissue regeneration. However, the native osteogenic and angiogenic capacities of MSC-Exos are often insufficient to repair critical-sized bone defects, and the underlying immune mechanisms remain elusive. Furthermore, achieving sustained delivery and stable activity of MSC-Exos at the defect site is essential for optimal therapeutic outcomes. Here, we extracted exosomes from osteogenically pre-differentiated human bone marrow mesenchymal stem cells (hBMSCs) by ultracentrifugation and encapsulated them in gelatin methacryloyl (GelMA) hydrogel to construct a composite scaffold. The resulting exosome-encapsulated hydrogel exhibited excellent mechanical properties and biocompatibility, facilitating sustained delivery of MSC-Exos. Osteogenic pre-differentiation significantly enhanced the osteogenic and angiogenic properties of MSC-Exos, promoting osteogenic differentiation of hBMSCs and angiogenesis of human umbilical vein endothelial cells (HUVECs). Furthermore, MSC-Exos induced polarization of Raw264.7 cells from a pro-inflammatory phenotype to an anti-inflammatory phenotype under simulated inflammatory conditions, thereby creating an immune microenvironment conducive to osteogenesis. RNA sequencing and bioinformatics analysis revealed that MSC-Exos activate the p53 pathway through targeted delivery of internal microRNAs and regulate macrophage polarization by reducing DNA oxidative damage. Our study highlights the potential of osteogenic exosome-encapsulated composite hydrogels for the development of cell-free scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaorong Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Yunhui Si
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jingxian Liang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Mengsha Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Zhiwei Wang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yinying Qin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
3
|
Mao J, Sun J, Wang L, Liu X, Bi J. Flexible and high-strength bioactive glass fiber membrane for bone regeneration with the aid of alkoxysilane sol spinnability. Mater Today Bio 2024; 28:101224. [PMID: 39290465 PMCID: PMC11407074 DOI: 10.1016/j.mtbio.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/25/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
In this research, the spinnability of bioactive glass (BG) precursor solution was supplied by alkoxysilane sol with appropriate molar ratio of H2O/silicon (R) to prepare bioactive glass fiber membrane (BFM) using electrospinning (ES) technique. Alkoxysilane could form a linear or chain-like colloidal aggregation in hydrolysis-polycondensation with R = 2 or so, thereby exhibiting good spinnability. Therefore, the role of polymer binders could be largely replaced. Due to the significant decrease of polymer binder, the defects within the fibers are largely reduced and degree of fiber densification was improved after calcination, leading to BFM drastically enhanced strength and flexibility. The effect of R and calcination temperature on mechanical performance were investigated in detail. The tensile strength could reach the highest value 2.31 MPa with R = 2 and calcination at 700 °C. In addition, under this preparation condition, the BFM also possessed good flexibility with bending rigidity 37.7 mN. Furthermore, the great performance of promoting cell proliferation and osteogenesis could be observed from in vitro cellular experiment. The BFM calcined at 750 °C exhibited the best promoting osteogenic differentiation ability. The rat skull defect model revealed BFM could perform well in osteogenesis in vivo.
Collapse
Affiliation(s)
- Junjie Mao
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| | - Junyuan Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Lu Wang
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, PR China
| | - Jianqiang Bi
- Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, PR China
| |
Collapse
|
4
|
Mao J, Bi J, Sun Z, Wang L. MgSiO 3 Fiber Membrane Scaffold with Triggered Drug Delivery for Osteosarcoma Synergetic Therapy and Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34669-34683. [PMID: 38946103 DOI: 10.1021/acsami.4c05744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
In this research, a novel MgSiO3 fiber membrane (MSFM) loaded with indocyanine green (ICG) and doxorubicin (DOX) was prepared. Because of MgSiO3's unique lamellar structure composed of a silicon-oxygen tetrahedron, magnesium ion (Mg2+) moves easily and can be further replaced with other cations. Therefore, because of the positively charged functional group of ICG, MSFM has a rather high drug loading for ICG. In addition, there is electrostatic attraction between DOX (a cationic drug) and ICG (an anionic drug). Hence, after loading ICG, more DOX can be adsorbed into MSFM because of electrostatic interaction. The ICG endows the MSFM outstanding photothermal therapy (PTT) performance, and DOX as a chemotherapeutic drug can restrain tumor growth. On the one hand, H+ exchanged with the positively charged DOX based on the MgSiO3 special lamellar structure. On the other hand, the thermal effect could break the electrostatic interaction between ICG and DOX. Based on the above two points, both tumor acidic microenvironment and photothermal effect can trigger DOX release. What's more, in vitro and in vivo antiosteosarcoma therapy evaluations displayed a superior synergetic PTT-chemotherapy anticancer treatment and excellent biocompatibility of DOX&ICG-MSFM. Finally, the MSFM was proven to greatly promote cell proliferation, differentiation, and bone regeneration performance in vitro and in vivo. Therefore, MSFM provides a creative perspective in the design of multifunctional scaffolds and shows promising applications in controlled drug delivery, antitumor performance, and osteogenesis.
Collapse
Affiliation(s)
- Junjie Mao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Jianqiang Bi
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| | - Zhenqian Sun
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P. R. China
- The First Clinical Medical School, Shandong University, Jinan, Shandong 250012, P. R. China
| | - Lu Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, P. R. China
- Schools of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China
| |
Collapse
|
5
|
Souza A, Kevin M, Rodriguez BJ, Reynaud EG. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour in vitro. Biomed Mater 2024; 19:045024. [PMID: 38810635 DOI: 10.1088/1748-605x/ad51bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
Three-dimensional (3D) (bio)printing technology has boosted the advancement of the biomedical field. However, tissue engineering is an evolving field and (bio)printing biomimetic constructions for tissue formation is still a challenge. As a new methodology to facilitate the construction of more complex structures, we suggest the use of the fluid-phase 3D printing to pattern the scaffold's properties. The methodology consists of an exchangeable fluid-phase printing medium in which the constructions are fabricated and patterned during the printing process. Using the fluid-phase methodology, the biological and mechanical properties can be tailored promoting cell behaviour guidance and compartmentalization. In this study, we first assessed different formulations of alginate/gelatin to create a stable substrate capable to promote massive cell colonizationin vitroover time. Overall, formulations with lower gelatin content and 2-(N-morpholino)ethanesulfonic acid (MES) buffer as a solvent showed better stability under cell culture conditions and enhanced U2OS cell growth. Next, the fluid-phase showed better printing fidelity and resolution in comparison to air printing as it diminished the collapsing and the spread of the hydrogel strand. In sequence, the fluid-phase methodology was used to create functionalized alginate-gelatin-arginylglycylaspartic acid peptide (RGD) hydrogels via carbodiimides chemistry. The alginate-gelatin-RGD hydrogels showed an increase of 2.97-fold in cell growth and more spread substrate colonization in comparison to alginate-gelatin hydrogel. Moreover, the fluid-phase methodology was used to add RGD molecules to pre-determined parts of the alginate-gelatin substrate during the printing process promoting U2OS cell compartmentalization. In addition, different substrate stiffnesses were also created via fluid-phase by crosslinking the hydrogel with different concentrations of CaCl2during the printing process. As a result, the U2OS cells were also compartmentalized on the stiffer parts of the printings. Finally, our results showed that by combining stiffer hydrogel with RGD increasing concentrations we can create a synergetic effect and boost cell metabolism by up to 3.17-fold. This work presents an idea of a new printing process for tailoring multiple parameters in hydrogel substrates by using fluid-phase to generate more faithful replication of thein vivoenvironment.
Collapse
Affiliation(s)
- Andrea Souza
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield Dublin 4, Ireland
| | - McCarthy Kevin
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield Dublin 4, Ireland
| | - Brian J Rodriguez
- School of Physics, University College Dublin, Belfield Dublin 4, Ireland
| | - Emmanuel G Reynaud
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield Dublin 4, Ireland
| |
Collapse
|
6
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
7
|
Chen C, Tao W, Jiang D, Yang Y, Liang T, Gu Q, Xu Y, Zhao J, Zhou X, Fan X. Enzymatic functionalization of decellularized tilapia skin scaffolds with enhanced skin regeneration. SOFT MATTER 2024; 20:3508-3519. [PMID: 38595302 DOI: 10.1039/d3sm01742g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The decellularized tilapia skin (dTS) has gained significant attention as a promising material for tissue regeneration due to its ability to provide unique structural and functional components that support cell growth, adhesion, and proliferation. However, the clinical application of dTS is limited by its low mechanical strength and rapid biodegradability. Herein, we prepare a novel RGD (arginine-glycine-aspartic acid) functionalized dTS scaffold (dTS/RGD) by using transglutaminase (TGase) crosslinking. The developed dTS/RGD scaffold possesses excellent properties, including a medium porosity of ∼59.2%, a suitable degradation rate of approximately 80% over a period of two weeks, and appropriate mechanical strength with a maximum tensile stress of ∼46.36 MPa which is much higher than that of dTS (∼32.23 MPa). These properties make the dTS/RGD scaffold ideal for promoting cell adhesion and proliferation, thereby accelerating skin wound healing in a full-thickness skin defect model. Such an enzymatic cross-linking strategy provides a favorable microenvironment for wound healing and holds great potential for application in skin regeneration engineering.
Collapse
Affiliation(s)
- Cuixia Chen
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Wenwen Tao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Di Jiang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Yanyan Yang
- Shandong Marine Resource and Environment Research Institute, 216 Changjiang Road, Yantai Economic Development Zone, Yantai 264006, China
| | - Tiantian Liang
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Qilong Gu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Yuran Xu
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Junjuan Zhao
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China.
| | - Xing Zhou
- Qingdao West Coast New Area Marine Development Bureau, Qingdao 266400, China
| | - Xinglong Fan
- Department of Thoracic Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| |
Collapse
|
8
|
Han Q, He J, Bai L, Huang Y, Chen B, Li Z, Xu M, Liu Q, Wang S, Wen N, Zhang J, Guo B, Yin Z. Injectable Bioadhesive Photocrosslinkable Hydrogels with Sustained Release of Kartogenin to Promote Chondrogenic Differentiation and Partial-Thickness Cartilage Defects Repair. Adv Healthc Mater 2024; 13:e2303255. [PMID: 38253413 DOI: 10.1002/adhm.202303255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Partial-thickness cartilage defect (PTCD) is a common and formidable clinical challenge without effective therapeutic approaches. The inherent anti-adhesive characteristics of the extracellular matrix within cartilage pose a significant impediment to the integration of cells or biomaterials with the native cartilage during cartilage repair. Here, an injectable photocrosslinked bioadhesive hydrogel, consisting of gelatin methacryloyl (GM), acryloyl-6-aminocaproic acid-g-N-hydroxysuccinimide (AN), and poly(lactic-co-glycolic acid) microspheres loaded with kartogenin (KGN) (abbreviated as GM/AN/KGN hydrogel), is designed to enhance interfacial integration and repair of PTCD. After injected in situ at the irregular defect, a stable and robust hydrogel network is rapidly formed by ultraviolet irradiation, and it can be quickly and tightly adhered to native cartilage through amide bonds. The hydrogel exhibits good adhesion strength up to 27.25 ± 1.22 kPa by lap shear strength experiments. The GM/AN/KGN hydrogel demonstrates good adhesion, low swelling, resistance to fatigue, biocompatibility, and chondrogenesis properties in vitro. A rat model with PTCD exhibits restoration of a smoother surface, stable seamless integration, and abundant aggrecan and type II collagen production. The injectable stable adhesive hydrogel with long-term chondrogenic differentiation capacity shows great potential to facilitate repair of PTCD.
Collapse
Affiliation(s)
- Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahui He
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ying Huang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Zhenlong Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiaonan Liu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shuai Wang
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nuanyang Wen
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. School of Medicine, Northwest University, Xi'an, 710069, China
| | - Baolin Guo
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, and State Key Laboratory for Mechanical Behavior of Materials and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
9
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
10
|
Lukin I, Erezuma I, Garcia-Garcia P, Reyes R, Evora C, Kadumudi FB, Dolatshahi-Pirouz A, Orive G. Sumecton reinforced gelatin-based scaffolds for cell-free bone regeneration. Int J Biol Macromol 2023; 249:126023. [PMID: 37506785 DOI: 10.1016/j.ijbiomac.2023.126023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Bone tissue engineering has risen to tackle the challenges of the current clinical need concerning bone fractures that is already considered a healthcare system problem. Scaffold systems for the repair of this tissue have yielded different combinations including biomaterials with nanotechnology or biological agents. Herein, three-dimensional porous hydrogels were engineered based on gelatin as a natural biomaterial and reinforced with synthetic saponite nanoclays. Scaffolds were biocompatible and shown to enhance the inherent properties of pristine ones, in particular, proved to withstand pressures similar to load-bearing tissues. Studies with murine mesenchymal stem cells found that scaffolds had the potential to proliferate and promote cell differentiation. In vivo experiments were conducted to gain insight about the ability of these cell-free scaffolds to regenerate bone, as well as to determine the role that these nanoparticles in the scaffold could play as a drug delivery system. SDF-1 loaded scaffolds showed the highest percentage of bone formation, which was corroborated by osteogenic markers and new blood vessels. Albeit a first attempt in the field of synthetic nanosilicates, these results suggest that the designed constructs may serve as delivery platforms for biomimetic agents to mend bony defects, circumventing high doses of therapeutics and cell-loading systems.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Patricia Garcia-Garcia
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
11
|
Li X, Jian H, Han Q, Wang A, Li J, Man N, Li Q, Bai S, Li J. Three-dimensional (3D) bioprinting of medium toughened dipeptide hydrogel scaffolds with Hofmeister effect. J Colloid Interface Sci 2023; 639:1-6. [PMID: 36796110 DOI: 10.1016/j.jcis.2023.02.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Short peptide self-assembled hydrogels as 3D bioprinting inks show excellent biocompatibility and diverse functional expansion, and have broad application prospects in cell culture and tissue engineering. However, the preparation of biological hydrogel inks with adjustable mechanical strength and controllable degradation for 3D bioprinting still faces big challenges. Herein, we develop dipeptide bio-inks that can be gelled in-situ based on Hofmeister sequence, and prepare hydrogel scaffold by using a layer-by-layer 3D printing strategy. Excitingly, after the introduction of Dulbecco's Modified Eagle's medium (DMEM), which is necessary for cell culture, the hydrogel scaffolds show an excellent toughening effect, which matches the needs of cell culture. It's notable that in the whole process of preparation and 3D printing of hydrogel scaffolds, no cross-linking agent, ultraviolet (UV), heating or other exogenous factors are involved, ensuring high biosafety and biocompatibility. After two weeks of 3D culture, millimeter-sized cell spheres are obtained. This work provides an opportunity for the development of short peptide hydrogel bioinks without exogenous factors in 3D printing, tissue engineering, tumor simulant reconstruction and other biomedical fields.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Honglei Jian
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingquan Han
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningyuan Man
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qi Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Pepe A, Laezza A, Ostuni A, Scelsi A, Laurita A, Bochicchio B. Bioconjugation of Carbohydrates to Gelatin Sponges Promoting 3D Cell Cultures. Biomimetics (Basel) 2023; 8:biomimetics8020193. [PMID: 37218779 DOI: 10.3390/biomimetics8020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023] Open
Abstract
Gelatin sponges are widely employed as hemostatic agents, and are gaining increasing interest as 3D scaffolds for tissue engineering. To broaden their possible application in the field of tissue engineering, a straightforward synthetic protocol able to anchor the disaccharides, maltose and lactose, for specific cell interactions was developed. A high conjugation yield was confirmed by 1H-NMR and FT-IR spectroscopy, and the morphology of the resulting decorated sponges was characterized by SEM. After the crosslinking reaction, the sponges preserve their porous structure as ascertained by SEM. Finally, HepG2 cells cultured on the decorated gelatin sponges show high viability and significant differences in the cellular morphology as a function of the conjugated disaccharide. More spherical morphologies are observed when cultured on maltose-conjugated gelatin sponges, while a more flattened aspect is discerned when cultured onto lactose-conjugated gelatin sponges. Considering the increasing interest in small-sized carbohydrates as signaling cues on biomaterial surfaces, systematic studies on how small carbohydrates might influence cell adhesion and differentiation processes could take advantage of the described protocol.
Collapse
Affiliation(s)
- Antonietta Pepe
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Antonio Laezza
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Angela Ostuni
- Cellular Biochemistry Laboratory, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandra Scelsi
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Alessandro Laurita
- Microscopy Area, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Brigida Bochicchio
- Laboratory of Protein-Inspired Biomaterials, Department of Science, University of Basilicata, Via Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
13
|
Targeting Agents in Biomaterial-Mediated Bone Regeneration. Int J Mol Sci 2023; 24:ijms24032007. [PMID: 36768328 PMCID: PMC9916506 DOI: 10.3390/ijms24032007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Bone diseases are a global public concern that affect millions of people. Even though current treatments present high efficacy, they also show several side effects. In this sense, the development of biocompatible nanoparticles and macroscopic scaffolds has been shown to improve bone regeneration while diminishing side effects. In this review, we present a new trend in these materials, reporting several examples of materials that specifically recognize several agents of the bone microenvironment. Briefly, we provide a subtle introduction to the bone microenvironment. Then, the different targeting agents are exposed. Afterward, several examples of nanoparticles and scaffolds modified with these agents are shown. Finally, we provide some future perspectives and conclusions. Overall, this topic presents high potential to create promising translational strategies for the treatment of bone-related diseases. We expect this review to provide a comprehensive description of the incipient state-of-the-art of bone-targeting agents in bone regeneration.
Collapse
|
14
|
Lukin I, Erezuma I, Maeso L, Zarate J, Desimone MF, Al-Tel TH, Dolatshahi-Pirouz A, Orive G. Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics 2022; 14:pharmaceutics14061177. [PMID: 35745750 PMCID: PMC9229474 DOI: 10.3390/pharmaceutics14061177] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 02/04/2023] Open
Abstract
Tissue engineering has become a medical alternative in this society with an ever-increasing lifespan. Advances in the areas of technology and biomaterials have facilitated the use of engineered constructs for medical issues. This review discusses on-going concerns and the latest developments in a widely employed biomaterial in the field of tissue engineering: gelatin. Emerging techniques including 3D bioprinting and gelatin functionalization have demonstrated better mimicking of native tissue by reinforcing gelatin-based systems, among others. This breakthrough facilitates, on the one hand, the manufacturing process when it comes to practicality and cost-effectiveness, which plays a key role in the transition towards clinical application. On the other hand, it can be concluded that gelatin could be considered as one of the promising biomaterials in future trends, in which the focus might be on the detection and diagnosis of diseases rather than treatment.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
| | - Lidia Maeso
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
| | - Jon Zarate
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Martin Federico Desimone
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica Junín 956, Universidad de Buenos Aires, Buenos Aires 1113, Argentina;
| | - Taleb H. Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, 2800 Kgs Lyngby, Denmark;
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain; (I.L.); (I.E.); (L.M.); (J.Z.)
- Bioaraba, NanoBioCel Research Group, 01009 Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore
- Correspondence:
| |
Collapse
|