1
|
Fu XQ, Leong HY, Qiao LZ, Zhou JN, Hu W, Yao SJ, Lin DQ. Application of aqueous two-phase extraction for separation and purification of various adeno-associated viruses. Biotechnol Lett 2025; 47:16. [PMID: 39777562 DOI: 10.1007/s10529-024-03555-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Adeno-associated viruses (AAVs) are widely used as gene therapy vectors due to their safety, stability, and long-term expression characteristics. The objective of this work is to develop an aqueous two-phase system (ATPS) as a universal platform for the separation and purification of AAVs. RESULTS This study utilized polyethylene glycol (PEG)/salt ATPSs to separate and purify various AAV serotypes, including AAV5, AAV8, and AAV9, which focusing on serotype-specific performance and partial empty capsid removal. The results showed that all the AAV serotypes were mainly enriched in the interphase of ATPS, with achieving high recovery (> 95%) and impurity removal (> 95%). The PEG/sodium citrate ATPS was serotype-independent, but the process optimization of component concentrations for each serotype was necessary to attain the best performance. Notably, a single-step aqueous two-phase extraction also demonstrated the ability to remove some amount of empty capsids from the crude cell lysate, with removal rate ranging from 4 to 25%. CONCLUSIONS The results demonstrated the practical applicability of PEG/sodium citrate ATPS in separating and purifying different AAV serotypes, which addressing key challenges in gene therapy vector production.
Collapse
Affiliation(s)
- Xiao-Qian Fu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Yi Leong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Liang-Zhi Qiao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Jia-Nan Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Wei Hu
- Hangzhou Jiayin Biotech Ltd., Hangzhou, 310018, China
| | - Shan-Jing Yao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Dong-Qiang Lin
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang Key Laboratory of Smart Biomaterials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Islam MN, Liu Y, Herr AE. Electromigration of Charged Analytes Through Immiscible Fluids in Multiphasic Electrophoresis. Electrophoresis 2024. [PMID: 39620442 DOI: 10.1002/elps.202400192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 12/11/2024]
Abstract
Multiphasic buffer systems have been of greatest interest in electrophoresis and liquid-liquid electrotransfer; this study extends that foundation by exploring the interplay of the geometric and viscous properties of an interleaving oil layer on the electrotransfer of a charged analyte from an aqueous solution into a hydrogel. We utilized finite element analysis to examine two complementary configurations: one being electrotransfer of a charged analyte (protein) in an aqueous phase into a surrounding hydrogel layer and another being electrotransfer of the protein from that originating aqueous phase-through an interleaving oil layer of predetermined viscosity and thickness-and into a surrounding hydrogel layer. Results indicate that the presence of an oil layer leads to increased skew of the injected peak. To explain this difference in injection dispersion, we utilize Probstein's framework and compare the Péclet (Pe) number with the ratio between length scales characteristic to the axial and radial dispersion, respectively. The formulation assigns electrotransfer conditions into six different dispersion regimes. We show that the presence or absence of an interleaving oil layer moves the observed peak dispersion into distinct electrotransfer regimes; the presence of an oil layer augments the electrophoretic mobility mismatch among the different phases, resulting in a five-fold increase in Pe and a six-fold increase in the ratio between the axial to radial dispersion characteristic lengths. We further show that oil viscosity significantly influences resultant injection dispersion. A decrease in oil-layer viscosity from 0.08 to 0.02 Pa s results in a >100% decrease in injection dispersion. Our theoretical predictions were experimentally validated by comparing the electrotransfer regimes of three different mineral oil samples. We show that lowering the oil viscosity to 0.0039 Pa s results in an injection regime similar to that of the absence of an oil layer. Understanding of the impact of electrotransfer of charged species across multiple immiscible fluid layers on peak dispersion informs the design of multiphasic electrophoresis systems.
Collapse
Affiliation(s)
- Md Nazibul Islam
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Yang Liu
- Department of Bioengineering, University of California, Berkeley, California, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
3
|
Li D, Jiang R, Li J, Liu Z, Ahmed YZ, Zhao Q, Song Y, Li M. Modification of the electrokinetic motion of microalgae through light illumination for viability assessment. Electrophoresis 2024; 45:2114-2124. [PMID: 38738699 DOI: 10.1002/elps.202400040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
The viability detection of microalgae with the electrokinetic (EK) technique shows vast applications in the biology and maritime industry. However, due to the slight variations in the EK properties between alive and dead microalgae cells, the accuracy and practicability of this technique is limited. In this paper, the light illumination pretreatment was conducted to modify the EK velocity of microalgae for enhancing the EK difference. The effects of the illumination time and light color on the EK velocities of Chlorella vulgaris and Isochrysis galbana were systematically measured, and the EK differences between alive and dead cells were calculated and compared. The results indicate that under light illumination, the photosynthesis of the alive cells leads to the amplification of the zeta potential, leading toward increase in the EK difference along with the illumination time. By using light with different color spectra to treat the microalgae, it was found that the EK difference changes with the light color according to the following order: white light > red light > blue light > green light. The difference in EK potential with exposure to white light treatment surpasses over 10-fold in comparison to those without such treatment. The light pretreatment technique, as illustrated in this study, offers an advantageous strategy to enhance the EK difference between living and dead cells, proving beneficial in the field of microalgae biotechnology.
Collapse
Affiliation(s)
- Deyu Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Rui Jiang
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Jun Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Zhen Liu
- Department of New Energy, Voyah Technology Co., Ltd., Wuhan, P. R. China
| | - Yasmeen Zamir Ahmed
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Qiankun Zhao
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| |
Collapse
|
4
|
Jorge AMS, Pereira JFB. Aqueous two-phase systems - versatile and advanced (bio)process engineering tools. Chem Commun (Camb) 2024; 60:12144-12168. [PMID: 39350759 DOI: 10.1039/d4cc02663b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Aqueous two-phase systems (ATPS), also known as Aqueous Biphasic Systems (ABS), have been extensively studied as platforms for the separation and purification of biomolecules and other valuable compounds. These liquid-liquid extraction (LLE) systems have been a tool for biotechnology since its origin (Albertsson, 1950's), recently expanding to exciting fields such as health, biomedicine and material sciences. Due to their biocompatibility, amenability, flexibility, and versatility, ATPS have been applied across various research areas, addressing many challenges associated with conventional methodologies. In this feature article, we first discuss the fundamentals of ATPS and the molecular mechanisms that govern their formation and are crucial for their application. We then explore the most prominent and innovative applications of these systems in downstream processing. Additionally, we provide insights into the design of in situ upstream-downstream integrated platforms, and their use as pre-treatment and analytical tools. The latest advancements in ATPS applications within disruptive bioengineering and biotechnology fields are presented, along with their pioneering use in emerging scientific areas, such as the formation of all-aqueous (water-in-water) emulsions, microfluidic systems, and membrane-free batteries. Overall, this work underscores the transformative potential of ATPS in various branches of science, pinpointing directions for future research to fully explore and maximize ATPS capabilities, overcome existing hurdles, and drive innovation forward.
Collapse
Affiliation(s)
- Alexandre M S Jorge
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| | - Jorge F B Pereira
- University of Coimbra, CERES, FCTUC, Department of Chemical Engineering, Rua Sílvio Lima, Pólo II - Pinhal de Marrocos, 3030-790 Coimbra, Portugal.
| |
Collapse
|
5
|
Baghbanbashi M, Shiran HS, Kakkar A, Pazuki G, Ristroph K. Recent advances in drug delivery applications of aqueous two-phase systems. PNAS NEXUS 2024; 3:pgae255. [PMID: 39006476 PMCID: PMC11245733 DOI: 10.1093/pnasnexus/pgae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/16/2024]
Abstract
Aqueous two-phase systems (ATPSs) are liquid-liquid equilibria between two aqueous phases that usually contain over 70% water content each, which results in a nontoxic organic solvent-free environment for biological compounds and biomolecules. ATPSs have attracted significant interest in applications for formulating carriers (microparticles, nanoparticles, hydrogels, and polymersomes) which can be prepared using the spontaneous phase separation of ATPSs as a driving force, and loaded with a wide range of bioactive materials, including small molecule drugs, proteins, and cells, for delivery applications. This review provides a detailed analysis of various ATPSs, including strategies employed for particle formation, polymerization of droplets in ATPSs, phase-guided block copolymer assemblies, and stimulus-responsive carriers. Processes for loading various bioactive payloads are discussed, and applications of these systems for drug delivery are summarized and discussed.
Collapse
Affiliation(s)
- Mojhdeh Baghbanbashi
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| | - Hadi Shaker Shiran
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St West, Montreal, QC H3A 0B8, Canada
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 1591634311, Iran
| | - Kurt Ristroph
- Department of Agricultural and Biological Engineering, Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Islam MN, Liu Y, Herr AE. Electromigration of Charged Analytes Through Immiscible Fluids in Multiphasic Electrophoresis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596534. [PMID: 38853831 PMCID: PMC11160796 DOI: 10.1101/2024.05.29.596534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Multiphasic buffer systems have been of greatest interest in electrophoresis and liquid-liquid electrotransfer; this study extends that foundation by exploring the interplay of the geometric and viscous properties of an interleaving oil layer on the electrotransfer of a charged analyte from an aqueous solution into a hydrogel. We utilized finite element analysis to examine two complementary configurations: one being electrotransfer of a charged analyte (protein) in an aqueous phase into a surrounding hydrogel layer and another being electrotransfer of the protein from that originating aqueous phase - through an interleaving oil layer of predetermined viscosity and thickness - and into a surrounding hydrogel layer. Results indicate that the presence of an oil layer leads to increased skew of the injected peak. To explain this difference in injection dispersion, we utilize Probstein's framework and compare the Péclet (Pe) number with the ratio between length scales characteristic to the axial and radial dispersion, respectively. The formulation assigns electrotransfer conditions into six different dispersion regimes. We show that the presence or absence of an interleaving oil layer moves the observed peak dispersion into distinct electrotransfer regimes; the presence of an oil layer augments the electrophoretic mobility mismatch between the different phases, resulting in a five-fold increase in Pe and a six-fold increase in the ratio between the axial to radial dispersion characteristic lengths. We further show that oil viscosity significantly influences resultant injection dispersion. A decrease in oil-layer viscosity from 0.08 Pa·s to 0.02 Pa·s results in a >100% decrease in injection dispersion. Our theoretical predictions were experimentally validated by comparing the electrotransfer regimes of three different mineral oil samples. We show that lowering the oil viscosity to 0.0039 Pa·s results in an injection regime similar to that of the absence of an oil layer. Additionally, we measure the migration distance and show that average electromigration velocity over the transit duration is inversely proportional to the viscosity of an interleaving oil layer. Understanding of the impact of electrotransfer of charged species across multiple immiscible fluid layers on peak dispersion informs the design of multiphasic electrophoresis systems.
Collapse
Affiliation(s)
- Md Nazibul Islam
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Yang Liu
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA 30602, USA
| | - Amy E Herr
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
7
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kolobov A, Kiverin A, Chikishev L. Motion of magnetic motors across liquid-liquid interface. J Colloid Interface Sci 2023; 652:1456-1466. [PMID: 37659314 DOI: 10.1016/j.jcis.2023.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
HYPOTHESIS In a number of applications related to chemical engineering and drug delivery, magnetic nanoparticles should move through a liquid-liquid interface in the presence of surfactant molecules. However, due to the action of capillary forces, this is not always possible. The mechanism of particle motion through the interface essentially depends on the intensity of the Marangoni flow, which is induced on the interface during its deformation. EXPERIMENTS In this paper we study the motion of nanoparticles Fe3O4 through the water-tridecane interface under the action of a nonuniform magnetic field when using different surfactants. FINDINGS If the linear size of the magnetic motor turns out to be less than a certain critical value, then it is not able to move between phases due to the action of capillary forces on the interface. Depending on the type and concentration of the surfactant used, various mechanisms for the motor motion through the liquid-liquid interface can be carried out. In one of them, a liquid phase is transferred through the interface along with a movable motor, while in the other, it is not.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Leonid Chikishev
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Xu R, Zhang J, Cao Z, Song Y, Xin X. Electrokinetic motion and viability assessment of algae with a polyethylene glycol-dextran interface. Electrophoresis 2023; 44:1818-1825. [PMID: 37438992 DOI: 10.1002/elps.202300057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 07/14/2023]
Abstract
At present, there is still limited report on the electrokinetic (EK) behavior of bioparticles at the interface of an aqueous two-phase system. In this paper, the EK motion and viability assessment of live algae mixed with the NaClO treated dead algae were carried out at the interface formed by polyethylene glycol (PEG)-rich phase and dextran (DEX)-rich phase in a straight microchannel. The experimental results show that both the live and dead algae at the PEG-DEX interface migrate from the negative electrode to the positive electrode, and the EK velocity of live algae at the interface is slightly larger than that of the dead ones with similar diameters. For either live or dead algae, the EK velocity at the interface decreases with the increase in diameter. A size-velocity curve was used to evaluate the viability of the algae. As most of the microorganisms in ballast water are algae, the method in this paper provides a promising way to detect and evaluate the live microorganism in treated ballast water of a ship.
Collapse
Affiliation(s)
- Runxin Xu
- College of Navigation, Dalian Maritime University, Dalian, P. R. China
| | - Junyan Zhang
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Zhenhao Cao
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Yongxin Song
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| | - Xiukun Xin
- College of Marine Engineering, Dalian Maritime University, Dalian, P. R. China
| |
Collapse
|
9
|
Wang S, Xu Q, Zhang Z, Chen S, Jiang Y, Feng Z, Wang D, Jiang X. Reverse flow enhanced inertia pinched flow fractionation. LAB ON A CHIP 2023; 23:4324-4333. [PMID: 37702391 DOI: 10.1039/d3lc00473b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Particle separation plays a critical role in many biochemical analyses. In this article, we report a method of reverse flow enhanced inertia pinched flow fractionation (RF-iPFF) for particle separation. RF-iPFF separates particles by size based on the flow-induced inertial lift, and in the abruptly broadened segment, reverse flow is utilized to further enhance the separation distance between particles of different sizes. The separation performance can be significantly improved by reverse flow. Generally, compared with the case without reverse flow, this RF-iPFF technique can increase the particle throughput by about 10 times. To demonstrate the advantages of RF-iPFF, RF-iPFF was compared with traditional iPFF through a control experiment. RF-iPFF consistently outperformed iPFF across various conditions we studied. In addition, we use tumor cells spiked into the human whole blood to evaluate the separation performance of RF-iPFF.
Collapse
Affiliation(s)
- Saijie Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Quanchen Xu
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Zhihan Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Shengbo Chen
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Yizhou Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Zhuowei Feng
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Dou Wang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| | - Xingyu Jiang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
10
|
Ma X, Guo G, Wu X, Wu Q, Liu F, Zhang H, Shi N, Guan Y. Advances in Integration, Wearable Applications, and Artificial Intelligence of Biomedical Microfluidics Systems. MICROMACHINES 2023; 14:mi14050972. [PMID: 37241596 DOI: 10.3390/mi14050972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Abstract
Microfluidics attracts much attention due to its multiple advantages such as high throughput, rapid analysis, low sample volume, and high sensitivity. Microfluidics has profoundly influenced many fields including chemistry, biology, medicine, information technology, and other disciplines. However, some stumbling stones (miniaturization, integration, and intelligence) strain the development of industrialization and commercialization of microchips. The miniaturization of microfluidics means fewer samples and reagents, shorter times to results, and less footprint space consumption, enabling a high throughput and parallelism of sample analysis. Additionally, micro-size channels tend to produce laminar flow, which probably permits some creative applications that are not accessible to traditional fluid-processing platforms. The reasonable integration of biomedical/physical biosensors, semiconductor microelectronics, communications, and other cutting-edge technologies should greatly expand the applications of current microfluidic devices and help develop the next generation of lab-on-a-chip (LOC). At the same time, the evolution of artificial intelligence also gives another strong impetus to the rapid development of microfluidics. Biomedical applications based on microfluidics normally bring a large amount of complex data, so it is a big challenge for researchers and technicians to analyze those huge and complicated data accurately and quickly. To address this problem, machine learning is viewed as an indispensable and powerful tool in processing the data collected from micro-devices. In this review, we mainly focus on discussing the integration, miniaturization, portability, and intelligence of microfluidics technology.
Collapse
Affiliation(s)
- Xingfeng Ma
- School of Communication and Information Engineering, Shanghai University, Shanghai 200000, China
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Gang Guo
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
| | - Xuanye Wu
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
| | - Qiang Wu
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| | - Fangfang Liu
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
| | - Hua Zhang
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| | - Nan Shi
- Shanghai Industrial μTechnology Research Institute, Shanghai 200000, China
- Institute of Translational Medicine, Shanghai University, Shanghai 200000, China
| | - Yimin Guan
- Department of Microelectronics, Shanghai University, Shanghai 200000, China
- Shanghai Aure Technology Limited Company, Shanghai 200000, China
| |
Collapse
|
11
|
Li M, Hu L, Li D, Song Y, Sun Y. Mechanism and performance of ionic diodes fabricated from 2D trapezoidal-shaped nanochannels. Phys Chem Chem Phys 2022; 24:19927-19937. [PMID: 35968888 DOI: 10.1039/d2cp03168j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioinspired asymmetric two-dimensional (2D) nanochannels with ionic diode behavior are highly desirable, as they can be constructed and modified easily. However, the knowledge about the rectification mechanism of the nanochannels is still very limited. In this paper, the ionic current rectification (ICR) of the 2D trapezoidal-shaped nanochannels was studied both numerically and experimentally. A multi-physics model, considering the electric field, the ion concentration field, and the flow field, was built for simulating the ion transportation inside the nanochannels. With a limited channel height, the 2D nanochannels are counter-ion selective; therefore, under an external electric field, the accumulation of co-ions takes place at one end of the nanochannels. By introducing shape asymmetry to the nanochannels, the ICR was achieved due to the asymmetric ion concentration polarization at two ends of the nanochannels under opposite electric fields. The structure of the nanochannels, the surface charge density of the nanochannel walls, and the ionic strength of the working fluids affect the ICR of the ionic diodes by changing the ion concentration polarization at two ends of the nanochannels. In the experiment, the current-voltage curves of the nanochannel arrays fabricated by assembling graphene oxide nanosheets were measured, which are in accordance with the numerical results. This paper provides a comprehensive understanding of the mechanism of the 2D trapezoidal-shaped ionic diodes, which may act as a guideline for the design and optimization of ionic diodes.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China.
| | - Lide Hu
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China.
| | - Deyu Li
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China.
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian, Liaoning, 116026, China.
| | - Ya Sun
- Department of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Rd., Dalian, Liaoning, 116026, China.
| |
Collapse
|
12
|
Chang H, Li D, Zhang X, Xu R, Zhang J, Song Y. Size‐dependent electrophoretic motion of polystyrene particles at polyethylene glycol–dextran interfaces. Electrophoresis 2022; 43:2112-2119. [DOI: 10.1002/elps.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Chang
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Deyu Li
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Xiangyu Zhang
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Runxin Xu
- Department of Navigation Dalian Maritime University Dalian P. R. China
| | - Junyan Zhang
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| | - Yongxin Song
- Department of Marine Engineering Dalian Maritime University Dalian P. R. China
| |
Collapse
|