1
|
Wang X, Ruan X, Du CF, Yu H. Developments in Surface/Interface Engineering of Ni-Rich Layered Cathode Materials. CHEM REC 2022; 22:e202200119. [PMID: 35733083 DOI: 10.1002/tcr.202200119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Indexed: 11/12/2022]
Abstract
Ni-rich layered cathodes with high energy densities reveal an enormous potential for lithium-ion batteries (LIBs), however, their poor stability and reliability have inhibited their application. To ensure their stability over extensive cycles at high voltage, surface/interface modifications are necessary to minimize the adverse reactions at the cathode-electrolyte interface (CEI), which is a critical factor impeding electrode performance. Therefore, this review provides a comprehensive discussion on the surface engineering of Ni-rich cathode materials for enhancing their lithium storage property. Based on the structural characteristics of the Ni-rich cathode, the major failure mechanisms of these structures during synthesis and operation are summarized. Then the existing surface modification techniques are discussed and compared. Recent breakthroughs in various surface coatings and modification strategies are categorized and their unique functionalities in structural protection and performance-enhancing are elaborated. Finally, the challenges and outlook on the Ni-rich cathode materials are also proposed.
Collapse
Affiliation(s)
- Xiaomei Wang
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| | - Xiaopeng Ruan
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| | - Cheng-Feng Du
- Northwestern Polytechnical University, Chongqing Technology innovation Center, Chongqing, 400000, P. R. China
| | - Hong Yu
- State Key Laboratory of Solidification Processing Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
2
|
Song X, Wang H, Li Z, Du CF, Guo R. A Review of MnO 2 Composites Incorporated with Conductive Materials for Energy Storage. CHEM REC 2022; 22:e202200118. [PMID: 35686874 DOI: 10.1002/tcr.202200118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Indexed: 01/06/2023]
Abstract
Manganese dioxide (MnO2 ) has been widely used in the field of energy storage due to its high specific capacitance, low cost, natural abundance, and being environmentally friendly. However, suffering from poor electrical conductivity and high dissolvability, the performance of MnO2 can no longer meet the needs of rapidly growing technological development, especially for the application as electrode material in metal-ion batteries and supercapacitors. In this review, recent studies on the development of binary or multiple MnO2 -based composites with conductive components for energy storage are summarized. Firstly, general preparing methods for MnO2 -based composites are introduced. Subsequently, the binary and multiple MnO2 -based composites with carbon, conducting polymer, and other conductive materials are discussed respectively. The improvement in their performance is summarized as well. Finally, perspectives on the practical applications of MnO2 -based composites are presented.
Collapse
Affiliation(s)
- Xin Song
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Haoran Wang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Zhaoneng Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China
| | - Cheng-Feng Du
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China.,Northwestern Polytechnical University Chongqing Technology innovation Center, Chongqing, 400000, PR China
| | - Ruisheng Guo
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shanxi 710072, China.,Shandong Laboratory of Yantai Advanced Materials and Green Manufacture, Yantai, Shandong 264006, China
| |
Collapse
|