1
|
Yang F, Liu X, Xing C, Chen Z, Zhao L, Liu X, Gao W, Zhu L, Liu H, Zhou W. RuCo/ZrO 2 Tandem Catalysts with Photothermal Confinement Effect for Enhanced CO 2 Methanation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406828. [PMID: 38984724 PMCID: PMC11425663 DOI: 10.1002/advs.202406828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Photothermal CO2 methanation reaction represents a promising strategy for addressing CO2-related environmental issues. The presence of efficient tandem catalytic sites with a localized high-temperature is an effective pathway to enhance the performance of CO2 methanation. Here the bimetallic RuCo nanoparticles anchored on ZrO2 fiber cotton (RuCo/ZrO2) as a photothermal catalyst for CO2 methanation are prepared. A significant photothermal CO2 methanation performance with optimal CH4 selectivity (99%) and rate (169.93 mmol gcat -1 h-1) is achieved. The photothermal energy of the RuCo bimetallic nanoparticles, confined by the infrared insulation and low thermal conductivity of the ZrO2 fiber cotton (ZrO2 FC), provides a localized high-temperature. In situ spectroscopic experiments on RuCo/ZrO2, Ru/ZrO2, and Co/ZrO2 indicate that the construction of tandem catalytic sites, where the Co site favors CO2 conversion to CO while incorporating Ru enhances CO* adsorption for subsequent hydrogenation, results in a higher selectivity toward CH4. This work opens a new insight into designing tandem catalysts with a photothermal confinement effect in CO2 methanation reaction.
Collapse
Affiliation(s)
- Fan Yang
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Xiaoyu Liu
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Chuanshun Xing
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Zizheng Chen
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Lili Zhao
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Xingwu Liu
- Synfuels China Technology Co. Ltd.Leyuan Second South Street Yanqi Development Zone HuairouBeijing101407P. R. China
| | - Wenqiang Gao
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Luyi Zhu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| |
Collapse
|
2
|
Huang XL. Unveiling the role of inorganic nanoparticles in Earth's biochemical evolution through electron transfer dynamics. iScience 2024; 27:109555. [PMID: 38638571 PMCID: PMC11024932 DOI: 10.1016/j.isci.2024.109555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
This article explores the intricate interplay between inorganic nanoparticles and Earth's biochemical history, with a focus on their electron transfer properties. It reveals how iron oxide and sulfide nanoparticles, as examples of inorganic nanoparticles, exhibit oxidoreductase activity similar to proteins. Termed "life fossil oxidoreductases," these inorganic enzymes influence redox reactions, detoxification processes, and nutrient cycling in early Earth environments. By emphasizing the structural configuration of nanoparticles and their electron conformation, including oxygen defects and metal vacancies, especially electron hopping, the article provides a foundation for understanding inorganic enzyme mechanisms. This approach, rooted in physics, underscores that life's origin and evolution are governed by electron transfer principles within the framework of chemical equilibrium. Today, these nanoparticles serve as vital biocatalysts in natural ecosystems, participating in critical reactions for ecosystem health. The research highlights their enduring impact on Earth's history, shaping ecosystems and interacting with protein metal centers through shared electron transfer dynamics, offering insights into early life processes and adaptations.
Collapse
Affiliation(s)
- Xiao-Lan Huang
- Center for Clean Water Technology, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-6044, USA
| |
Collapse
|
3
|
Gültekin HE, Yaşayan G, Bal-Öztürk A, Bigham A, Simchi AA, Zarepour A, Iravani S, Zarrabi A. Advancements and applications of upconversion nanoparticles in wound dressings. MATERIALS HORIZONS 2024; 11:363-387. [PMID: 37955196 DOI: 10.1039/d3mh01330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.
Collapse
Affiliation(s)
- Hazal Ezgi Gültekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Gökçen Yaşayan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey
| | - Ayça Bal-Öztürk
- Department of Analytical Chemistry, Faculty of Pharmacy, Istinye University, 34010, Istanbul, Turkey
- Institute of Health Sciences, Department of Stem Cell and Tissue Engineering, Istinye University, 34010 Istanbul, Turkey
- Stem Cell and Tissue Engineering Application and Research Center (ISUKOK), Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d'Oltremare Padiglione 20, 80125 Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Abdolreza Arash Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 Tehran, Iran
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588 Tehran, Iran
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
| |
Collapse
|
4
|
Wang S, Zhang X, Hao S, Qiao J, Wang Z, Wu L, Liu J, Wang F. Nitrogen-Doped Magnetic-Dielectric-Carbon Aerogel for High-Efficiency Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2023; 16:16. [PMID: 37975962 PMCID: PMC10656410 DOI: 10.1007/s40820-023-01244-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Carbon-based aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight, controllable fabrication and versatility. Nevertheless, developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption (EWA) materials with a broad effective absorption bandwidth (EAB) and strong absorption yet hits some snags. Herein, the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment, homogeneous and abundant nickel (Ni) and manganese oxide (MnO) particles in situ grew on the carbon aerogels. Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels, the nitrogen-doped magnetic-dielectric-carbon aerogel (Ni/MnO-CA) suggests a praiseworthy EWA performance, with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss (RLmin) of - 64.09 dB, while achieving a specific reflection loss of - 253.32 dB mm-1. Furthermore, the aerogel reveals excellent radar stealth, infrared stealth, and thermal management capabilities. Hence, the high-performance, easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection, electronic devices and aerospace.
Collapse
Affiliation(s)
- Shijie Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Xue Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jing Qiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, Guangdong, People's Republic of China.
| |
Collapse
|
5
|
Sun X, Wang Y, Kimura H, Ni C, Hou C, Wang B, Zhang Y, Yang X, Yu R, Du W, Xie X. Thermal stability of Ni3ZnC0.7: As tunable additive for biomass-derived carbon sheet composites with efficient microwave absorption. J Colloid Interface Sci 2023; 642:447-461. [PMID: 37023516 DOI: 10.1016/j.jcis.2023.03.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
With the rapidly development of radar detection technology and the increasingly complex application environment in military field and electromagnetic pollution surrounded by electron devices, increasingly demand is needed for electromagnetic wave absorbent materials with high absorption efficiency and thermal stability. Herein, a novel Ni3ZnC0.7/Ni loaded puffed-rice derived carbon (RNZC) composites are successfully prepared by vacuum filtration of metal-organic frameworks gel precursor together with layered porous-structure carbon and followed by calcination. The Ni3ZnC0.7 particles uniformly decorate on the surface and pores of puffed-rice derived carbon. The puffed-rice derived carbon@Ni3ZnC0.7/Ni-400 mg (RNZC-4) sample displayed the best electromagnetic wave absorption (EMA) performances among the samples with different Ni3ZnC0.7 loading. The minimum reflection loss (RLmin) of the RNZC-4 composite reaches -39.9 dB at 8.6 GHz, while widest effective absorption bandwidth (EAB) of RNZC-4 for RL < -10 dB can reach 9.9 GHz (8.1-18 GHz, 1.49 mm). High porosity and large specific surface area promote the multiple reflection-absorption effect of the incident electromagnetic waves. The Ni3ZnC0.7 nanoparticles provide a large number of interfaces and dipole factors. Analysis reveals that the RNZC-4 remained general stability under 400 °C with formation of a small amount of NiO and ZnO phases. Surprisingly, at such high temperature, the absorbing properties of the material are improved rather than decreased. Obviously, the material still maintains good electromagnetic wave performance at high temperature, and implies that the absorber shows good performance stability. Therefore, our preparations exhibit potential applications under extreme conditions and a new insight for the design and application of bimetallic carbides.
Collapse
|
6
|
Dediu V, Ghitman J, Gradisteanu Pircalabioru G, Chan KH, Iliescu FS, Iliescu C. Trends in Photothermal Nanostructures for Antimicrobial Applications. Int J Mol Sci 2023; 24:9375. [PMID: 37298326 PMCID: PMC10253355 DOI: 10.3390/ijms24119375] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The rapid development of antimicrobial resistance due to broad antibiotic utilisation in the healthcare and food industries and the non-availability of novel antibiotics represents one of the most critical public health issues worldwide. Current advances in nanotechnology allow new materials to address drug-resistant bacterial infections in specific, focused, and biologically safe ways. The unique physicochemical properties, biocompatibility, and wide range of adaptability of nanomaterials that exhibit photothermal capability can be employed to develop the next generation of photothermally induced controllable hyperthermia as antibacterial nanoplatforms. Here, we review the current state of the art in different functional classes of photothermal antibacterial nanomaterials and strategies to optimise antimicrobial efficiency. The recent achievements and trends in developing photothermally active nanostructures, including plasmonic metals, semiconductors, and carbon-based and organic photothermal polymers, and antibacterial mechanisms of action, including anti-multidrug-resistant bacteria and biofilm removal, will be discussed. Insights into the mechanisms of the photothermal effect and various factors influencing photothermal antimicrobial performance, emphasising the structure-performance relationship, are discussed. We will examine the photothermal agents' functionalisation for specific bacteria, the effects of the near-infrared light irradiation spectrum, and active photothermal materials for multimodal synergistic-based therapies to minimise side effects and maintain low costs. The most relevant applications are presented, such as antibiofilm formation, biofilm penetration or ablation, and nanomaterial-based infected wound therapy. Practical antibacterial applications employing photothermal antimicrobial agents, alone or in synergistic combination with other nanomaterials, are considered. Existing challenges and limitations in photothermal antimicrobial therapy and future perspectives are presented from the structural, functional, safety, and clinical potential points of view.
Collapse
Affiliation(s)
- Violeta Dediu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Jana Ghitman
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Gratiela Gradisteanu Pircalabioru
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
- Research Institute of University of Bucharest, University of Bucharest, 050095 Bucharest, Romania
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore;
- NUS College, National University of Singapore, 18 College Avenue East, Singapore 138593, Singapore
| | - Florina Silvia Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
| | - Ciprian Iliescu
- National Research and Development Institute in Microtechnologies—IMT Bucharest, 126A Erou Iancu Nicolae Street, 077190 Voluntari, Romania;
- eBio-hub Research-Center, University “Politehnica” of Bucharest, 6 Iuliu Maniu Boulevard, Campus Building, 061344 Bucharest, Romania; (J.G.); (G.G.P.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| |
Collapse
|
7
|
Tang Y, Zhao T, Han H, Yang Z, Liu J, Wen X, Wang F. Ir-CoO Active Centers Supported on Porous Al 2 O 3 Nanosheets as Efficient and Durable Photo-Thermal Catalysts for CO 2 Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300122. [PMID: 36932051 DOI: 10.1002/advs.202300122] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 05/27/2023]
Abstract
Photo-thermal catalytic CO2 hydrogenation is currently extensively studied as one of the most promising approaches for the conversion of CO2 into value-added chemicals under mild conditions; however, achieving desirable conversion efficiency and target product selectivity remains challenging. Herein, the fabrication of Ir-CoO/Al2 O3 catalysts derived from Ir/CoAl LDH composites is reported for photo-thermal CO2 methanation, which consist of Ir-CoO ensembles as active centers that are evenly anchored on amorphous Al2 O3 nanosheets. A CH4 production rate of 128.9 mmol gcat⁻ 1 h⁻1 is achieved at 250 °C under ambient pressure and visible light irradiation, outperforming most reported metal-based catalysts. Mechanism studies based on density functional theory (DFT) calculations and numerical simulations reveal that the CoO nanoparticles function as photocatalysts to donate electrons for Ir nanoparticles and meanwhile act as "nanoheaters" to effectively elevate the local temperature around Ir active sites, thus promoting the adsorption, activation, and conversion of reactant molecules. In situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) demonstrates that illumination also efficiently boosts the conversion of formate intermediates. The mechanism of dual functions of photothermal semiconductors as photocatalysts for electron donation and as nano-heaters for local temperature enhancement provides new insight in the exploration for efficient photo-thermal catalysts.
Collapse
Affiliation(s)
- Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Tingting Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Hecheng Han
- Shandong Technology Center of Nanodevices and Integration, School of Microelectronics, Shandong University, Jinan, 250100, P. R. China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi, 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing, 101400, P. R. China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, P. R. China
| |
Collapse
|
8
|
Dilnawaz F, Acharya S, Kanungo A. A clinical perspective of chitosan nanoparticles for infectious disease management. Polym Bull (Berl) 2023:1-25. [PMID: 37362954 PMCID: PMC10073797 DOI: 10.1007/s00289-023-04755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/08/2023] [Accepted: 03/03/2023] [Indexed: 06/28/2023]
Abstract
Infectious diseases and their effective management are still a challenge in this modern era of medicine. Diseases, such as the SARS-CoV-2, Ebola virus, and Zika virus, still put human civilization at peril. Existing drug banks, which include antivirals, antibacterial, and small-molecule drugs, are the most advocated method for treatment, although effective but they still flounder in many instances. This calls for finding more effective alternatives for tackling the menace of infectious diseases. Nanoformulations are progressively being implemented for clinical translation and are being considered a new paradigm against infectious diseases. Natural polymers like chitosan are preferred to design nanoparticles owing to their biocompatibility, biodegradation, and long shelf-life. The chitosan nanoparticles (CNPs) being highly adaptive delivers contemporary prevention for infectious diseases. Currently, they are being used as antibacterial, drug, and vaccine delivery vehicles, and wound-dressing materials, for infectious disease treatment. Although the recruitment of CNPs in clinical trials associated with infectious diseases is minimal, this may increase shortly due to the sudden emergence of unknown pathogens like SARS-CoV-2, thus turning them into a panacea for the management of microorganisms. This review particularly focuses on the all-around application of CNPs along with their recent clinical applications in infectious disease management.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha 752050 India
| | - Sarbari Acharya
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| | - Anwesha Kanungo
- Department of Biology, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024 India
| |
Collapse
|
9
|
Chen J, Zhao L, Ling J, Yang LY, Ouyang XK. A quaternized chitosan and carboxylated cellulose nanofiber-based sponge with a microchannel structure for rapid hemostasis and wound healing. Int J Biol Macromol 2023; 233:123631. [PMID: 36775224 DOI: 10.1016/j.ijbiomac.2023.123631] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
A hemostatic sponge should perform rapid hemostasis and exhibit antibacterial properties, whilst being non-toxic, breathable, and degradable. This study prepared a hemostatic sponge (CQTC) with microchannels, specifically a microchannel structure based on quaternized chitosan (QCS) and carboxylated cellulose nanofibers (CCNF) obtained by using tannic acid and Cu2+ complex (crosslinking agent). The sponge had low density and high porosity, while being degradable. The combination of microchannels and three-dimensional porous structure of CQTC leads to excellent liquid absorption and hemostasis ability, based on a liquid absorption rate test and in vitro hemostasis experiment. In addition, CQTC exhibited excellent antibacterial activity against both gram-negative and gram-positive bacteria, and it promoted wound healing. In conclusion, this porous and microchannel hemostatic sponge has broad application prospects as a clinical wound hemostatic material.
Collapse
Affiliation(s)
- Jing Chen
- Zhoushan Maternal and Child Care Hospital, Zhoushan 316000, PR China
| | - Lijuan Zhao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Li-Ye Yang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
10
|
Zheng Y, Zhu Y, Dai J, Lei J, You J, Chen N, Wang L, Luo M, Wu J. Atomically precise Au nanocluster-embedded carrageenan for single near-infrared light-triggered photothermal and photodynamic antibacterial therapy. Int J Biol Macromol 2023; 230:123452. [PMID: 36708904 DOI: 10.1016/j.ijbiomac.2023.123452] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/10/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
In this study, we report atomically precise gold nanoclusters-embedded natural polysaccharide carrageenan as a novel hydrogel platform for single near-infrared light-triggered photothermal (PTT) and photodynamic (PDT) antibacterial therapy. Briefly, atomically precise captopril-capped Au nanoclusters (Au25Capt18) prepared by an alkaline NaBH4 reduction method and then embedded them into the biosafe carrageenan to achieve superior PTT and PDT dual-mode antibacterial effect. In this platform, the embedded Au25Capt18, as simple-component phototherapeutic agents, exhibit superior thermal effects and singlet oxygen generation under a single near-infrared (NIR, 808 nm) light irradiation, which enables rapid elimination of bacteria. Carrageenan endows the hydrogel platform with superior gelation characteristics and wound microenvironmental regulation. The Au25Capt18-embedded hydrogels exhibited good water retention, hemostasis, and breathability, providing a favorable niche environment for promoting wound healing. In vitro experiments confirmed the excellent antibacterial activity of the Au25Capt18 hydrogels against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The antibacterial effect and promoting wound healing function were further validated in a S. aureus-infected wound model. Biosafety evaluation showed that the Au25Capt18 hydrogel has excellent biocompatibility. This PTT/PDT dual-mode therapy offers an alternative strategy for battling bacterial infections without antibiotics. More importantly, this hydrogel is facile to prepare which is helpful for expanding applications.
Collapse
Affiliation(s)
- Youkun Zheng
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuxin Zhu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianghong Dai
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jiaojiao Lei
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jingcan You
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Ni Chen
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China
| | - Liqun Wang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou 646000, China; Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
Chen Y, Chen Z, Yang D, Zhu L, Liang Z, Pang Y, Zhou L. Novel Microbial Palladium Nanoparticles with a High Photothermal Effect for Antibacterial Applications. ACS OMEGA 2023; 8:1534-1541. [PMID: 36643470 PMCID: PMC9835163 DOI: 10.1021/acsomega.2c07037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/12/2022] [Indexed: 06/12/2023]
Abstract
Novel biocompatible palladium nanoparticles (Pd-NPs) have been prepared by microorganisms via Bacillus megaterium Y-4. It was demonstrated that ultrasonication treatment of biologically reduced Pd-NPs impart a much higher absorption in NIR regions and a better photothermal conversion efficiency to the material. The as-prepared material showed excellent biocompatibility and antibacterial activity under NIR irradiation. In less than 10 min, the disinfection efficiency for a low dosage of Pd-NPs (20 mg/L) was 99.99% toward both Staphylococcus aureus and Escherichia coli. The exclusive and even dispersed microbial Pd-NPs display a high efficiency of photothermal conversion under the irradiation of NIR, which endows them with excellent antibacterial activity in a low dosage.
Collapse
Affiliation(s)
- Yuan Chen
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Great
Bay Area, Guangzhou University, Guangzhou, Guangdong 510006, PR China
- Institute
of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou, Guangdong 510006, PR China
| | - Zhiquan Chen
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Great
Bay Area, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| | - Didi Yang
- School
of Pharmacy, Hubei University of Science
and Technology, Xianning, Hubei 437100, PR China
| | - Lishan Zhu
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Great
Bay Area, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| | - Zhenda Liang
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Great
Bay Area, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| | - Yijun Pang
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Great
Bay Area, Guangzhou University, Guangzhou, Guangdong 510006, PR China
- School
of Pharmacy, Hubei University of Science
and Technology, Xianning, Hubei 437100, PR China
| | - Li Zhou
- Key
Laboratory for Water Quality and Conservation of the Pearl River Delta,
Ministry of Education, Institute of Environmental Research at Great
Bay Area, Guangzhou University, Guangzhou, Guangdong 510006, PR China
| |
Collapse
|
12
|
Mutalik C, Lin IH, Krisnawati DI, Khaerunnisa S, Khafid M, Widodo, Hsiao YC, Kuo TR. Antibacterial Pathways in Transition Metal-Based Nanocomposites: A Mechanistic Overview. Int J Nanomedicine 2022; 17:6821-6842. [PMID: 36605560 PMCID: PMC9809169 DOI: 10.2147/ijn.s392081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
Across the planet, outbreaks of bacterial illnesses pose major health risks and raise concerns. Photodynamic, photothermal, and metal ion release effects of transition metal-based nanocomposites (TMNs) were recently shown to be highly effective in reducing bacterial resistance and upsurges in outbreaks. Surface plasmonic resonance, photonics, crystal structures, and optical properties of TMNs have been used to regulate metal ion release, produce oxidative stress, and generate heat for bactericidal applications. The superior properties of TMNs provide a chance to investigate and improve their antimicrobial actions, perhaps leading to therapeutic interventions. In this review, we discuss three alternative antibacterial strategies based on TMNs of photodynamic therapy, photothermal therapy, and metal ion release and their mechanistic actions. The scientific community has made significant efforts to address the safety, effectiveness, toxicity, and biocompatibility of these metallic nanostructures; significant achievements and trends have been highlighted in this review. The combination of therapies together has borne significant results to counter antimicrobial resistance (4-log reduction). These three antimicrobial pathways are separated into subcategories based on recent successes, highlighting potential needs and challenges in medical, environmental, and allied industries.
Collapse
Affiliation(s)
- Chinmaya Mutalik
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - I-Hsin Lin
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | | | - Siti Khaerunnisa
- Department of Physiology and Medical Biochemistry, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Muhamad Khafid
- Department of Nursing, Faculty of Nursing and Midwifery, Universitas Nahdlatul Ulama Surabaya, East Java, Indonesia
| | - Widodo
- College of Information System, Universitas Nusantara PGRI, Kediri, Indonesia
| | - Yu-Cheng Hsiao
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan,Stanford Byers Center for Biodesign, Stanford University, Stanford, CA, USA,Correspondence: Yu-Cheng Hsiao; Tsung-Rong Kuo, Tel +886-2-66382736 ext. 1359; +886-2-27361661 ext. 7706, Email ;
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Yuan M, Xue J, Li J, Ma S, Wang M. PCN-222/Ag2O-Ag p-n heterojunction modified fabric as recyclable photocatalytic platform for boosting bacteria inactivation and organic pollutant degradation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Hao S, Han H, Yang Z, Chen M, Jiang Y, Lu G, Dong L, Wen H, Li H, Liu J, Wu L, Wang Z, Wang F. Recent Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials. NANO-MICRO LETTERS 2022; 14:178. [PMID: 36001173 PMCID: PMC9402885 DOI: 10.1007/s40820-022-00901-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/26/2022] [Indexed: 05/04/2023]
Abstract
HIGHLIGHTS Fabrication, characterizations and photothermal properties of MXenes are systematically described. Photothermal-derived antibacterial performances and mechanisms of MXenes-based materials are summarized and reviewed. Recent advances in the derivative applications relying on antibacterial properties of MXenes-based materials, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics, are investigated. ABSTRACT The pernicious bacterial proliferation and emergence of super-resistant bacteria have already posed a great threat to public health, which drives researchers to develop antibiotic-free strategies to eradicate these fierce microbes. Although enormous achievements have already been achieved, it remains an arduous challenge to realize efficient sterilization to cut off the drug resistance generation. Recently, photothermal therapy (PTT) has emerged as a promising solution to efficiently damage the integrity of pathogenic bacteria based on hyperthermia beyond their tolerance. Until now, numerous photothermal agents have been studied for antimicrobial PTT. Among them, MXenes (a type of two-dimensional transition metal carbides or nitrides) are extensively investigated as one of the most promising candidates due to their high aspect ratio, atomic-thin thickness, excellent photothermal performance, low cytotoxicity, and ultrahigh dispersibility in aqueous systems. Besides, the enormous application scenarios using their antibacterial properties can be tailored via elaborated designs of MXenes-based materials. In this review, the synthetic approaches and textural properties of MXenes have been systematically presented first, and then the photothermal properties and sterilization mechanisms using MXenes-based materials are documented. Subsequently, recent progress in diverse fields making use of the photothermal and antibacterial performances of MXenes-based materials are well summarized to reveal the potential applications of these materials for various purposes, including in vitro and in vivo sterilization, solar water evaporation and purification, and flexible antibacterial fabrics. Last but not least, the current challenges and future perspectives are discussed to provide theoretical guidance for the fabrication of efficient antimicrobial systems using MXenes. [Image: see text]
Collapse
Affiliation(s)
- Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Mengting Chen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| | - Guixia Lu
- School of Civil Engineering, Qingdao University of Technology, Qingdao, 266033, People's Republic of China
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, 250012, People's Republic of China.
| | - Hongling Wen
- Department of Virology, School of Public Health, Shandong University, Jinan, 250012, People's Republic of China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Nanshan High-Tech Zone, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
15
|
Li C, Gao F, Tong Y, Chang F, Han H, Liu C, Xu M, Li H, Zhou J, Li X, Wang F, Jiang Y. NIR-Ⅱ window Triple-mode antibacterial Nanoplatform: Cationic Copper sulfide nanoparticles combined vancomycin for synergistic bacteria eradication. J Colloid Interface Sci 2022; 628:595-604. [PMID: 36027770 DOI: 10.1016/j.jcis.2022.08.086] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/06/2022] [Accepted: 08/13/2022] [Indexed: 11/27/2022]
Abstract
The widespread use of antibiotics leads to the increasing drug resistance of bacteria and poses a threat to human health. Therefore, there is an urgent need to develop new antibacterial strategies. Herein, based on the good photothermal properties of Copper sulfide (CuS) nanoparticles under near infrared (NIR) laser, we developed a NIR-Ⅱ window triple-mode synergetic antibacterial cCuS (cationic CuS) @Vancomycin (Van) nanoplatform. In the proposed nanoplatform, the positive charge on the surface makes cCuS@Van nanoplatform show better bacterial uptake and membrane damage; vancomycin induces chemical sterilization and provides a targeting effect to the nanoplatform; combined with the strong photothermal effect and deep tissue penetration at the excitation of 1064 nm laser, cCuS@Van nanoplatform can effectively kill bacterial. The photothermal conversion efficiency of the nanoplatform can reach 49.12 % and in vitro experiments show a sterilizing rate of more than 99.5 % to staphylococcus aureus (S. aureus) at the concentration of 3.0 μM, which also demonstrated the synergistic effect of cCuS@Van nanoplatform. In addition, low cytotoxicity to human cells conforms the good biocompatibility of the as-prepared cCuS@Van nanoplatform, which endows it a good application prospect in the field of antibacterial, such as wound healing and implant sterilization.
Collapse
Affiliation(s)
- Can Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Fucheng Gao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong, PR China
| | - Fei Chang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, PR China
| | - Hecheng Han
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Congrui Liu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Mengchen Xu
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China
| | - Jing Zhou
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China
| | - Xiaoyan Li
- Department of Endodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan 250012, PR China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, PR China.
| |
Collapse
|
16
|
Liang S, Liao G, Zhu W, Zhang L. Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies. Biomater Res 2022; 26:32. [PMID: 35794641 PMCID: PMC9258146 DOI: 10.1186/s40824-022-00275-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Theranostic nanoplatforms integrating diagnostic and therapeutic functions have received considerable attention in the past decade. Among them, hollow manganese (Mn)-based nanoplatforms are superior since they combine the advantages of hollow structures and the intrinsic theranostic features of Mn2+. Specifically, the hollow cavity can encapsulate a variety of small-molecule drugs, such as chemotherapeutic agents, photosensitizers and photothermal agents, for chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. After degradation in the tumor microenvironment (TME), the released Mn2+ is able to act simultaneously as a magnetic resonance (MR) imaging contrast agent (CA) and as a Fenton-like agent for chemodynamic therapy (CDT). More importantly, synergistic treatment outcomes can be realized by reasonable and optimized design of the hollow nanosystems. This review summarizes various Mn-based hollow nanoplatforms, including hollow MnxOy, hollow matrix-supported MnxOy, hollow Mn-doped nanoparticles, hollow Mn complex-based nanoparticles, hollow Mn-cobalt (Co)-based nanoparticles, and hollow Mn-iron (Fe)-based nanoparticles, for MR imaging-guided cancer therapies. Finally, we discuss the potential obstacles and perspectives of these hollow Mn-based nanotheranostics for translational applications. Mn-based hollow nanoplatforms such as hollow MnxOy nanoparticles, hollow matrix-supported MnxOy nanoparticles, Mn-doped hollow nanoparticles, Mn complex-based hollow nanoparticles, hollow Mn-Co-based nanoparticles and hollow Mn-Fe-based nanoparticles show great promise in cancer theranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
17
|
Jiang S, Cui C, Bai W, Wang W, Ren E, Xiao H, Zhou M, Cheng C, Guo R. Shape-controlled silver nanoplates colored fabric with tunable colors, photothermal antibacterial and colorimetric detection of hydrogen sulfide. J Colloid Interface Sci 2022; 626:1051-1061. [PMID: 35868195 DOI: 10.1016/j.jcis.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 07/02/2022] [Indexed: 10/31/2022]
Abstract
Anisotropic silver nanoplates are widely anticipated in multifunctional textiles, but their large-scale promotion is limited by the shortcomings of long reaction time, uncontrollable shape and low yield in the preparation process. In this study, a microwave-assisted strategy is provided to prepare shape-controllable silver nanoplates for coloration of non-woven fabric. Anisotropic Ag nanoplates are efficiently coated on the surface of chitosan-pretreated fabric by a simple solution impregnation method, which generates the fabric with tunable color and multiple functions. The Ag nanoplates loaded fabric exhibits excellent photothermal properties at 808 nm laser irradiation due to its unique plasmonic absorption features. Colored fabric shows a strong synergistic antibacterial effect, including silver ion release and hyperthermia caused by the photothermal effect under near-infrared (NIR) light. Additionally, colored fabrics can be used as colorimetric sensors for selective detection of H2S. The colorimetric values of visible color signal of fabric-based H2S gas sensor can be real-time precisely detected using a smartphone, enlightening its high potential as a wearable toxic gas alarm device for the simple and rapid detection of hazardous gases.
Collapse
Affiliation(s)
- Shan Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Ce Cui
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Wenhao Bai
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Weijie Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China
| | - Erhui Ren
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hongyan Xiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Cheng Cheng
- School of Chemical and Process Engineering, University of Leeds, Leeds, United Kingdom
| | - Ronghui Guo
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Yibin Industrial Technology Research Institute of Sichuan University, Yibin, Sichuan, China.
| |
Collapse
|
18
|
Zeng H, Yi J, Zhang L, Wu H, Wu K, Guo J. Fabrication of MIL-53(Fe)/Ag3PO4 cooperated Photoreduction of Ag0 Particles with outstanding Efficiency on photo-driven H2 Evolution and Pollutant Degradation. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00277a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel heterostructure photocatalyst includes photoreduction of Ag0 loaded MIL-53(Fe)/Ag3PO4 (MFAAx) composites were designed and successfully synthesized via hydrothermal with deposition and photoreduction method. Then the physicochemical and optical properties...
Collapse
|