1
|
Gan JC, Jiang ZF, Fang KM, Li XS, Zhang L, Feng JJ, Wang AJ. Low Rh doping accelerated HER/OER bifunctional catalytic activities of nanoflower-like Ni-Co sulfide for greatly boosting overall water splitting. J Colloid Interface Sci 2025; 677:221-231. [PMID: 39142162 DOI: 10.1016/j.jcis.2024.08.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024]
Abstract
Facile synthesis of high-efficiency and stable bifunctional electrocatalyst is essential for producing clean hydrogen in energy storage systems. Herein, low Rh-doped flower-like Ni3S2/Co3S4 heterostructures were facilely prepared on porous nickel foam (labeled Rh-Ni3S2/Co3S4/NF) by a hydrothermal method. The correlation of the precursors types with the morphological structures and catalytic properties were rigorously investigated for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in the control groups. The low Rh doping within the catalyst played important role in boosting the catalytic characteristics. The resulting catalyst showed the smaller overpotentials of 197 and 78 mV to drive a current density of 10 mA cm-2 for the OER and HER in alkaline electrolyte, respectively. And the potential only required 1.71 V to drive a current density of 100 mA cm-2 in a water splitting device. It reflects excellent overall water splitting of the home-made Rh-Ni3S2/Co3S4/NF. This strategy shed some constructive light for preparing transition metal sulfide-based electrocatalysts in water splitting devices.
Collapse
Affiliation(s)
- Jia-Chun Gan
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Zuo-Feng Jiang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xin-Sheng Li
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Saqib Rabbani M, Chen JH, Duan YX, Cui RC, Du X, Liu ZY, Imran Anwar M, Zafar Z, Yue XZ. Altering electronic structure of nickel foam supported CoNi-based oxide through Al ions modulation for efficient oxygen evolution reaction. J Colloid Interface Sci 2024; 673:19-25. [PMID: 38870664 DOI: 10.1016/j.jcis.2024.06.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Developing highly active and durable non-precious metal-based electrocatalysts for the oxygen evolution reaction (OER) is crucial in achieving efficient energy conversion. Herein, we reported a CoNiAl0.5O/NF nanofilament that exhibits higher OER activity than previously reported IrO2-based catalysts in alkaline solution. The as-synthesized CoNiAl0.5O/NF catalyst demonstrates a low overpotential of 230 mV at a current density of 100 mA cm-2, indicating its high catalytic efficiency. Furthermore, the catalyst exhibits a Tafel slope of 26 mV dec-1, suggesting favorable reaction kinetics. The CoNiAl0.5O/NF catalyst exhibits impressive stability, ensuring its potential for practical applications. Detailed characterizations reveal that the enhanced activity of CoNiAl0.5O/NF can be attributed to the electronic modulation achieved through Al3+ incorporation, which promotes the emergence of higher-valence Ni metal, facilitating nanofilament formation and improving mass transport and charge transfer processes. The synergistic effect between nanofilaments and porous nickel foam (NF) substrate significantly enhances the electrical conductivity of this catalyst material. This study highlights the significance of electronic structures for improving the activity of cost-effective and non-precious metal-based electrocatalysts for the OER.
Collapse
Affiliation(s)
| | - Jing-Huo Chen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yan-Xin Duan
- SINOPEC Maoming Petrochemical Co. Ltd, Maoming 525000, China
| | - Rong-Chao Cui
- SINOPEC Maoming Petrochemical Co. Ltd, Maoming 525000, China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhong-Yi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | | | - Zaiba Zafar
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xin-Zheng Yue
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
3
|
Qian X, Jiang L, Fang J, Ye J, He G, Chen H. Constructing a Self-Supported Bifunctional Multiphase Heterostructure for Electrocatalytic Overall Water Splitting. Inorg Chem 2024; 63:15368-15375. [PMID: 39099539 DOI: 10.1021/acs.inorgchem.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Developing well-performing and stable bifunctional electrocatalysts is of great importance for efficient green hydrogen production through water electrolysis. Herein, a three-dimensional self-supported CoMoS3.13/FeS2/Co3S4 on carbon paper (FeCoMoS/CP) heterostructure with interconnected nanosheets for overall water splitting was fabricated by a facile hydrothermal method followed by vulcanization treatment. The FeCoMoS/CP heterostructure with high structural integrity and more accessible active sites can effectively optimize the electronic structure through component regulation to achieve enhanced catalytic activity. Significantly, the FeCoMoS/CP required overpotentials of 257 mV at 50 mA cm-2 for OER and 280 mV at 20 mA cm-2 for HER. Importantly, the assembled FeCoMoS/CP||FeCoMoS/CP alkaline electrolyzer achieved a superior cell voltage of 1.48 V at 10 mA cm-2 with superb long-term stability, which implies a remarkable electrocatalytic performance of the FeCoMoS/CP heterostructure for overall water splitting. This work provides an applicable route for synthesizing high-performance bifunctional catalysts toward water electrolysis.
Collapse
Affiliation(s)
- Xingyue Qian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Lin Jiang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jing Fang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jingrui Ye
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
4
|
Fan X, Li B, Zhu C, Yan F, Zhang X, Chen Y. Nitrogen and Sulfur Co-Doped Carbon-Coated Ni 3S 2/MoO 2 Nanowires as Bifunctional Catalysts for Alkaline Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309655. [PMID: 38243851 DOI: 10.1002/smll.202309655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/30/2023] [Indexed: 01/22/2024]
Abstract
Bifunctional catalysts have inherent advantages in simplifying electrolysis devices and reducing electrolysis costs. Developing efficient and stable bifunctional catalysts is of great significance for industrial hydrogen production. Herein, a bifunctional catalyst, composed of nitrogen and sulfur co-doped carbon-coated trinickel disulfide (Ni3S2)/molybdenum dioxide (MoO2) nanowires (NiMoS@NSC NWs), is developed for seawater electrolysis. The designed NiMoS@NSC exhibited high activity in alkaline electrolyte with only 52 and 191 mV overpotential to attain 10 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Significantly, the electrolyzer (NiMoS@NSC||NiMoS@NSC) based on this bifunctional catalyst drove 100 mA cm-2 at only 1.71 V along with a robust stability over 100 h in alkaline seawater, which is superior to a platinum/nickel-iron layered double hydroxide couple (Pt||NiFe LDH). Theoretical calculations indicated that interfacial interactions between Ni3S2 and MoO2 rearranged the charge at interfaces and endowed Mo sites at the interfaces with Pt-like HER activity, while Ni sites on Ni3S2 surfaces at non-interfaces are the active centers for OER. Meanwhile, theoretical calculations and experimental results also demonstrated that interfacial interactions improved the electrical conductivity, boosting reaction kinetics for both HER and OER. This study presented a novel insight into the design of high-performance bifunctional electrocatalysts for seawater splitting.
Collapse
Affiliation(s)
- Xiaocheng Fan
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Bei Li
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Feng Yan
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, and School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Yujin Chen
- Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
5
|
Yang H, Ge L, Guan J, Ouyang B, Li H, Deng Y. Synergistic engineering of heteroatom doping and heterointerface construction in V-doped Ni(OH) 2/FeOOH to boost both oxygen evolution and urea oxidation reactions. J Colloid Interface Sci 2024; 653:721-729. [PMID: 37742431 DOI: 10.1016/j.jcis.2023.09.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
The exploitation of cost-effective and abundant non-noble metal electrocatalysts holds great significances in enhancing the efficiency of oxygen evolution reaction (OER) and/or urea oxidation reaction (UOR). Herein, we report an electrocatalyst with co-existing V-dopants and Ni(OH)2/FeOOH interfaces (referred to as A-NiFeV/NF, with "A" indicating "activated"). The electron coupling between Ni, Fe and V, analyzed through X-ray photoelectron spectroscopy, indicates that Ni and Fe both receive electrons from the V. Additionally, the Fe can also lead to a bias toward a lower valence of the Ni centers in Ni(OH)2. Further in situ Raman spectroscopy reveals that Ni2+(OH)2 inevitably undergoes transformation into amorphous Ni3+OOH during the activation process, however, the synergistic effects of V-dopants and Ni(OH)2/FeOOH interfaces keep the Ni centers mostly in a lower oxidation state of +2 even at high potential ranges. These low-valence Ni centers are proposed to be positively correlated with the optimized OER activity of the Ni-based electrocatalysts. As a result, the designed A-NiFeV/NF electrocatalyst exhibits low overpotentials of 234 and 313 mV to propel current densities of 10 and 100 mA/cm2, and a small Tafel slope of 37.8 mV/dec for OER in 1.0 M KOH. The catalyst demonstrates a stable OER activity for over 100 h at 100 mA/cm2. Additionally, it can be integrated with a solar cell to construct a solar-driven electrolytic OER device without additional electric input. Similarly, for the small molecule oxidation, UOR, only ∼1.33 and ∼1.39 V vs. RHE (RHE: reversible hydrogen electrode) are required to achieve 10 and 100 mA/cm2, respectively, in an electrolyte composed of 1.0 M KOH with 0.33 M urea.
Collapse
Affiliation(s)
- Hua Yang
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jiexin Guan
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
6
|
Xu W, Zhang JP, Tang XQ, Yang X, Han YW, Lan MJ, Tang X, Shen Y. Highly efficient sulfur-doped Ni 3Fe electrocatalysts for overall water splitting: Rapid synthesis, mechanism and driven by sustainable energy. J Colloid Interface Sci 2024; 653:1423-1431. [PMID: 37804611 DOI: 10.1016/j.jcis.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/25/2023] [Accepted: 10/01/2023] [Indexed: 10/09/2023]
Abstract
Designing efficient electrocatalysts and insight into their electrocatalytic mechanisms are significantly important for storing and converting the intermittent sustainable energy sources into clean hydrogen. In this study, we synthesize the bifunctional sulfur-doped Ni3Fe (NiFeS) electrocatalysts by a simple electrodeposition method only taking 30 s. After optimizing the components, it was found that the synthesized NiFeS electrocatalysts exhibit the excellent hydrogen and oxygen evolution reaction performances in 1.0 M potassium hydroxide solution. The results of experimental and theoretical calculations reveal that the introduced sulfur could optimize the electronic distribution, which make Ni electron-rich and Fe electron-deficient, thereby weakening the energy barriers of potential-determining steps, i.e. the absorption of H2O molecule on Ni sites for HER and formation of *OOH on Fe sites for OER, respectively. Besides, the NiFeS electrocatalysts are used as the bifunctional electrodes to water splitting, which only need 1.51 V to reach 10 mA·cm-2, and exhibits excellent durability and a >95% Faraday efficiency. Furthermore, the intermittent kinetic, wind and solar energies are used to power the assembled electrolyzer with NiFeS bi-electrodes to verify their great application potential. This work not only proved a deep insight into mechanism of the boosted electrocatalytic activities of NiFeS, but also the synthesized NiFeS electrocatalysts have great application prospect in the conversion of intermittent and sustainable energy sources into hydrogen by water electrocatalysis.
Collapse
Affiliation(s)
- Wei Xu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| | - Jun-Peng Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xian-Qing Tang
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xu Yang
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yi-Wen Han
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Ming-Jian Lan
- Department of Physics, School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xin Tang
- College of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing 400060, China.
| |
Collapse
|
7
|
Zazpe R, Rodriguez Pereira J, Thalluri SM, Hromadko L, Pavliňák D, Kolíbalová E, Kurka M, Sopha H, Macak JM. 2D FeS x Nanosheets by Atomic Layer Deposition: Electrocatalytic Properties for the Hydrogen Evolution Reaction. CHEMSUSCHEM 2023; 16:e202300115. [PMID: 36939153 DOI: 10.1002/cssc.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/11/2023] [Indexed: 06/10/2023]
Abstract
2-dimensional FeSx nanosheets of different sizes are synthesized by applying different numbers of atomic layer deposition (ALD) cycles on TiO2 nanotube layers and graphite sheets as supporting materials and used as an electrocatalyst for the hydrogen evolution reaction (HER). The electrochemical results confirm electrocatalytic activity in alkaline media with outstanding long-term stability (>65 h) and enhanced catalytic activity, reflected by a notable drop in the initial HER overpotential value (up to 26 %). By using a range of characterization techniques, the origin of the enhanced catalytic activity was found to be caused by the synergistic interplay between in situ morphological and compositional changes in the 2D FeSx nanosheets during HER. Under the application of a cathodic potential in alkaline media, the as-synthesized 2D FeSx nanosheets transformed into iron oxyhydroxide-iron oxysulfide core-shell nanoparticles, which exhibited a higher active catalytic surface and newly created Fe-based HER catalytic sites.
Collapse
Affiliation(s)
- Raul Zazpe
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02, Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Jhonatan Rodriguez Pereira
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02, Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Sitaramanjaneya M Thalluri
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02, Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Ludek Hromadko
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02, Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - David Pavliňák
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Eva Kolíbalová
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Michal Kurka
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02, Pardubice, Czech Republic
| | - Hanna Sopha
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02, Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| | - Jan M Macak
- Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 530 02, Pardubice, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Purkynova 123, 612 00, Brno, Czech Republic
| |
Collapse
|
8
|
Fu C, Fan J, Zhang Y, Lv H, Ji D, Hao W. Mild construction of an Fe-B-O based flexible electrode toward highly efficient alkaline simulated seawater splitting. J Colloid Interface Sci 2023; 634:804-816. [PMID: 36565622 DOI: 10.1016/j.jcis.2022.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
It is essential to construct self-supporting electrodes based on earth-abundant iron borides in a mild and economical manner for grid-scale hydrogen production. Herein, a series of highly efficient, flexible, robust, and scalable Fe-B-O@FeBx modified on hydrophilic cloth (denoted as Fe-B-O@FeBx/HC, 10 cm × 10 cm) are fabricated by mild electroless plating. The overpotentials and Tafel slope values for the hydrogen and oxygen evolution reactions are 59 mV and 57.62 mV dec-1 and 181 mV and 65.44 mV dec-1, respectively; only 1.462 V is required to achieve 10 mA cm-2 during overall water splitting (OWS). Fe-B-O@FeBx/HC maintains its high catalytic activity for more than 7 days at an industrial current density (400 mA cm-2), owing to the loosened popcorn-like Fe-B-O@FeBx that is firmly loaded on a 2D-layered and mechanically robust substrate along with its fast charge and mass transfer kinetics. The chimney effect of core-shell borides@(oxyhydro)oxides enhances the OWS performance and protects the inner metal borides from further corrosion. Moreover, the flexible Fe-B-O@FeBx/HC electrode has a low cost for grid-scale hydrogen production ($2.97 kg-1). The proposed strategy lays a solid foundation for universal preparation, large-scale hydrogen production and practical applications thereof.
Collapse
Affiliation(s)
- Chengyu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinli Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yiran Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Haiyang Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dingkun Ji
- Institute of Molecular Medicine (IMM), School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
9
|
A salt-baking 'recipe' of commercial nickel-molybdenum alloy foam for oxygen evolution catalysis in water splitting. J Colloid Interface Sci 2023; 640:975-982. [PMID: 36907157 DOI: 10.1016/j.jcis.2023.02.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Ni-based metal foam holds promise as an electrochemical water-splitting catalyst, due to its low cost, acceptable catalytic activity and superior stability. However, its catalytic activity must be improved before it can be used as an energy-saving catalyst. Here, a traditional Chinese recipe, salt-baking, was employed to surface engineering of nickel-molybdenum alloy (NiMo) foam. During salt-baking, a thin layer of FeOOH nano-flowers was assembled on the NiMo foam surface then the resultant NiMo-Fe catalytic material was evaluated for its ability to support oxygen evolution reaction (OER) activity. The NiMo-Fe foam catalyst generated an electric current density of 100 mA cm-2 that required an overpotential of only 280 mV, thus demonstrating that its performance far exceeded that of the benchmark catalyst RuO2 (375 mV). When employed as both the anode and cathode for use in alkaline water electrolysis, the NiMo-Fe foam generated a current density (j) output that was 3.5 times greater than that of NiMo. Thus, our proposed salt-baking method is a promising simple and environmentally friendly approach for surface engineering of metal foam for designing catalysts.
Collapse
|
10
|
Zhang H, Guo X, Liu W, Wu D, Cao D, Cheng D. Regulating surface composition of platinum-copper nanotubes for enhanced hydrogen evolution reaction in all pH values. J Colloid Interface Sci 2023; 629:53-62. [DOI: 10.1016/j.jcis.2022.08.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
|
11
|
Pan Z, Tang Z, Sun D, Zhan Y. Hierarchical NiCo2S4@NiMoO4 nanotube arrays on nickel foam as an advanced bifunctional electrocatalyst for efficient overall water splitting. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Liu Y, Gu X, Jiang W, Li H, Ma Y, Liu C, Wu Y, Che G. In Situ Synthesis of Morphology-Controlled MoOx/Fe1-xS Bifunctional Catalysts for High-Efficiency and Stable Alkaline Water Splitting. Dalton Trans 2022; 51:9486-9494. [DOI: 10.1039/d2dt01098d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advancement of a bifunctional electrocatalyst consisting of earth's rich elements and with high efficiency is the key to obtain hydrogen fuel by overall water splitting (OWS). Here, a facile...
Collapse
|