1
|
Kang X, Chang X, Zhao J, Li A, Zhao F. Donor-acceptor conjugated porous polymers from truxene and triazine: Effect of connecting units on photocatalytic activity for selective oxidation of amines and sulfides. J Colloid Interface Sci 2024; 683:532-545. [PMID: 39740569 DOI: 10.1016/j.jcis.2024.12.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/02/2025]
Abstract
Donor-acceptor (D-A) conjugated polymers have been widely reported as promising photocatalysts for organic conversion. However, achieving excellent photocatalytic performance still relies on the rational design of molecular structures and the careful selection of appropriate building blocks. In this study, we designed two D-A type conjugated porous polymers (CPPs) using 2,7,12-tribromo-5,5,10,10,15,15-hexamethyl-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene (Tx) as the donor unit and two 1,3,5-triazine-based derivatives, namely 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine (TTT) and 2,4,6-triphenyl-1,3,5-triazine (TPT), as the acceptor units. The resulting CPPs are named ThTx-CPP and PhTx-CPP, respectively. The research findings emphasize the profound impact of minute structural changes in the triazine peripheral groups on the photocatalytic activity of the polymers. Compared to PhTx-CPP, ThTx-CPP exhibits superior light-harvesting capabilities, narrower bandgaps, and improved efficiency in charge separation. Specifically, ThTx-CPP demonstrates outstanding activity and selectivity in both amine coupling and sulfide oxidation reactions, surpassing PhTx-CPP by a significant margin. Furthermore, the catalyst retains its consistent activity even after five cycles of reuse, showcasing its high stability and excellent reusability.
Collapse
Affiliation(s)
- Xuelei Kang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Xinran Chang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Jinsheng Zhao
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Aifeng Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
| | - Fei Zhao
- College of Chemistry and Chemical Engineering, Taishan University, Taian 271000, China.
| |
Collapse
|
2
|
Deng Z, Zhang W, Sun P, Zhao H, Cao X, Li G, Xiong S, Liu Q. Donor polarization engineering of conjugated microporous polymers to boost exciton dissociation for photocatalytic degradation of tetracycline. CHEMOSPHERE 2024; 364:143236. [PMID: 39222690 DOI: 10.1016/j.chemosphere.2024.143236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/14/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
The misuse and inevitable release of antibiotics can cause significant harm to both human health and the environment, and the use of polymeric semiconductors for photodegradation of antibiotics in aqueous environments is one of the most effective strategies to alleviate the current dilemma. Nevertheless, the inherently high exciton binding energy (Eb) and low photogenerated carrier transfer efficiency for most photocatalysts results in unsatisfactory photodegradation performance. Hence, this work proposes a donor polarization strategy to regulate the exciton dissociation of conjugated microporous polymers (CMPs) by minimizing their Eb. Results exhibited that the introduction of the strong donor unit 3,4-ethylenedioxythiophene (EDOT) not only reduces the Eb and effectively promotes exciton dissociation, but also broadens the visible light absorption of CMP. Among them, EdtTz-CMP with the lowest Eb (99 meV) delivered an efficiency of 94.6% in photocatalytic degradation of tetracycline (TC) with in 90 min, significantly higher than those of its analogues. This work provides a viable approach to design CMPs by tuning the intrinsic dipole of the donor for efficient environmental purification.
Collapse
Affiliation(s)
- Zhaozhang Deng
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Weijie Zhang
- College of Materials and Chemical Engineering, Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, Hunan Institute of Engineering, Xiangtan, 411104, China
| | - Penghao Sun
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Hongwei Zhao
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Xinxiu Cao
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Gen Li
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Shaohui Xiong
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Qingquan Liu
- School of Material Science and Engineering, Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, China.
| |
Collapse
|
3
|
Zhang X, Wu X, Chen R, Xu QH. A triazine-based covalent organic framework decorated with cadmium sulfide for efficient photocatalytic hydrogen evolution from water. J Colloid Interface Sci 2024; 665:100-108. [PMID: 38518422 DOI: 10.1016/j.jcis.2024.03.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024]
Abstract
Construction of inorganic/organic heterostructures has been proven to be a very promising strategy to design highly efficient photocatalysts for solar driven hydrogen evolution from water. Herein, we report the preparation of a direct Z-scheme heterojunction photocatalyst by in situ growth of cadmium sulfide on a triazine-based covalent organic framework (COF). The triazine based-COF was synthesized by condensation reaction of precursors 1,3,5-tris-(4-formyl-phenyl) triazine (TFPT) and 2,5-bis-(3-hydroxypropoxy) terephthalohydrazide (DHTH), termed as TFPT-DHTH-COF. Widely distributed nitrogen atoms throughout TFPT-DHTH-COF skeletons serve as anchoring sites for strong interfacial interactions with CdS. The CdS/TFPT-DHTH-COF composite showed a hydrogen evolution rate of 15.75 mmol h-1 g-1, which is about 75 times higher than that of TFPT-DHTH-COF (0.21 mmol h-1 g-1) and 3.4 times higher than that of CdS (4.57 mmol h-1 g-1). With the properly staggered band alignment and strong interfacial interaction between TFPT-DHTH-COF and CdS, a Z-scheme charge transfer pathway is achieved. The mechanism has been systematically analyzed by steady state and time-resolved photoluminescence measurements as well as in situ irradiated X-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Chemistry, National University of Singapore, 117543, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Xiao Wu
- Department of Chemistry, National University of Singapore, 117543, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Rufan Chen
- National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China.
| | - Qing-Hua Xu
- Department of Chemistry, National University of Singapore, 117543, Singapore; National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China.
| |
Collapse
|
4
|
You S, Ding Z, Yuan R, Long J, Xu C. Confined synthesis of conjugated microporous polymers for selective photocatalytic oxidation of amines. J Colloid Interface Sci 2024; 664:63-73. [PMID: 38460385 DOI: 10.1016/j.jcis.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/25/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Photocatalytic oxidative coupling of amines is considered a mild, efficient, and sustainable strategy for the synthesis of imines. As a versatile organic semiconductor, conjugated microporous polymers (CMPs) are attractive in photocatalysis areas due to the diversity of their polymeric monomers. Herein, we report that in addition to the design of monomers, size-confined polymerization is also a feasible strategy to modulate the structure and photocatalysis properties of CMPs. We adopted dibromopyrazine as polymeric units to prepare pyrazine-involved hollow spherical CMPs (H-PyB) using a template method and successfully performed size-confined polymerization of hollow samples by resizing the templates. Interestingly, the small confinement space induced the formation of CMPs with better conjugate extensibility, resulting in enhanced conductivity, narrowed bandgaps, improved photoelectric performance, etc. As a result, small-sized H-PyB CMPs had superior activity for the photocatalytic oxidation of amines. Particularly, the smallest H-PyB CMPs that we designed in the present work exhibited excellent performance for the photocatalytic coupling oxidation of amines. When using benzylamine as a model substrate, the yield of the corresponding imine reached ∼ 113 mmol·g-1·h-1, accompanied by almost 100 % selectivity. Furthermore, the as-designed confined samples exhibited stable photocatalytic activity as well as good applicability for oxidative coupling of different amines. This work not merely reports a kind of CMP photocatalysts with excellent performance for the imine coupling oxidation but also proposes an alternative strategy for constructing high-performance organic photocatalysts by size-confined synthesis.
Collapse
Affiliation(s)
- Shaojie You
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Zhengxin Ding
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Rusheng Yuan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Jinlin Long
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Chao Xu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|
5
|
Kang H, Su B, Lei Z. Construction of Bimetallic-Anchored Two-Dimensional Nanosheets on COF for Rechargeable Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16261-16270. [PMID: 38526992 DOI: 10.1021/acsami.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The preparation of carbon materials by doping bimetallic oxides into triazine frameworks (COFs) is a promising electrocatalyst with the potential to replace precious metals in energy storage systems. In this experiment, a covalent triazine framework (COF) was synthesized by 1,4-dicyanobenzene (DCB) and zinc chloride, in which the COF and transition metals were used as carbon, nitrogen, cobalt, and iron sources. According to the properties of this COF, the destruction of the catalyst during pyrolysis can be prevented. The enhanced catalytic performance of the catalysts can be seen by testing all of the samples of catalysts in an alkaline medium. The high half-wave potential (E1/2) of 0.86 V is comparable to Pt/C and also shows excellent durability by testing. Zinc-air batteries were assembled using the prepared catalysts, and the batteries were tested for specific capacity (548 mAh g-1) and power density (189 mW cm-2). This work provides a new direction for COF-derived catalysts for carbon materials.
Collapse
Affiliation(s)
- Huichun Kang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Bitao Su
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Ziqiang Lei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
6
|
Debruyne M, Borgmans S, Radhakrishnan S, Breynaert E, Vrielinck H, Leus K, Laemont A, De Vos J, Rawat KS, Vanlommel S, Rijckaert H, Salemi H, Everaert J, Vanden Bussche F, Poelman D, Morent R, De Geyter N, Van Der Voort P, Van Speybroeck V, Stevens CV. Engineering of Phenylpyridine- and Bipyridine-Based Covalent Organic Frameworks for Photocatalytic Tandem Aerobic Oxidation/Povarov Cyclization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35092-35106. [PMID: 37462114 DOI: 10.1021/acsami.3c07036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Covalent organic frameworks (COFs) are emerging as a new class of photoactive organic semiconductors, which possess crystalline ordered structures and high surface areas. COFs can be tailor-made toward specific (photocatalytic) applications, and the size and position of their band gaps can be tuned by the choice of building blocks and linkages. However, many types of building blocks are still unexplored as photocatalytic moieties and the scope of reactions photocatalyzed by COFs remains quite limited. In this work, we report the synthesis and application of two bipyridine- or phenylpyridine-based COFs: TpBpyCOF and TpPpyCOF. Due to their good photocatalytic properties, both materials were applied as metal-free photocatalysts for the tandem aerobic oxidation/Povarov cyclization and α-oxidation of N-aryl glycine derivatives, with the bipyridine-based TpBpyCOF exhibiting the highest activity. By expanding the range of reactions that can be photocatalyzed by COFs, this work paves the way toward the more widespread application of COFs as metal-free heterogeneous photocatalysts as a convenient alternative for commonly used homogeneous (metal-based) photocatalysts.
Collapse
Affiliation(s)
- Maarten Debruyne
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Sander Borgmans
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Sambhu Radhakrishnan
- NMR/X-ray Platform for Convergence Research (NMRCoRe) & Centre for Surface Chemistry and Catalysis: Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200f─Box 2461, Leuven 3001, Belgium
| | - Eric Breynaert
- NMR/X-ray Platform for Convergence Research (NMRCoRe) & Centre for Surface Chemistry and Catalysis: Characterisation and Application Team (COK-KAT), KU Leuven, Celestijnenlaan 200f─Box 2461, Leuven 3001, Belgium
| | - Henk Vrielinck
- Department of Solid State Sciences, Ghent University, Krijgslaan 281 (S1), Ghent 9000, Belgium
| | - Karen Leus
- Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 (B4), Ghent 9000, Belgium
| | - Andreas Laemont
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | - Juul De Vos
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Kuber Singh Rawat
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Siebe Vanlommel
- Department of Applied Physics, Ghent University, Technologiepark 46, Zwijnaarde 9052, Belgium
| | - Hannes Rijckaert
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | - Hadi Salemi
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Jonas Everaert
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Flore Vanden Bussche
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | - Dirk Poelman
- Department of Solid State Sciences, Ghent University, Krijgslaan 281 (S1), Ghent 9000, Belgium
| | - Rino Morent
- Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 (B4), Ghent 9000, Belgium
| | - Nathalie De Geyter
- Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 (B4), Ghent 9000, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), Ghent 9000, Belgium
| | | | - Christian V Stevens
- Department of Green Chemistry and Technology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|