1
|
He Y, Luo L, Li L, You T, Chen X. Synergistic signal-amplification effect of silver nanowires and bifunctional monomers on molecularly imprinted electrochemical sensor for diuron analysis. Biosens Bioelectron 2024; 262:116570. [PMID: 39018980 DOI: 10.1016/j.bios.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Molecularly imprinted polymers (MIP) have been widely owing to their specificity, however, their singular structure imposes limitations on their performance. Current enhancement methods, such as doping with inorganic nanomaterials or introducing various functional monomers, are limited and single, indicating that MIP performances require further advancement. In this work, a dual-modification approach that integrates both conductive inorganic nanomaterials and diverse bifunctional monomers was proposed to develop a multifunctional MIP-based electrochemical (MMIP-EC) sensor for diuron (DU) detection. The MMIP was synthesized through a one-step electrochemical copolymerization of silver nanowires (AgNWs), o-phenylenediamine (O-PD), and 3,4-ethylenedioxythiophene (EDOT). DU molecules could conduct fluent electron transfer within the MMIP layer through the interaction between anchored AgNWs and bifunctional monomers, and the abundant recognition sites and complementary cavity shapes ensured that the imprinted cavities exhibit high specificity. The current intensity amplified by the two modification strategies of MMIP (3.7 times) was significantly higher than the sum of their individual values (3.2 times), exerting a synergistic effect. Furthermore, the adsorption performance of the MMIP was characterized by examining the kinetics and isotherms of the adsorption process. Under optimal conditions, the MMIP-EC sensor exhibits a wide linear range (0.2 ng/mL to 10 μg/mL) for DU detection, with a low detection limit of 89 pg/mL and excellent selectivity (an imprinted factor of 10.4). In summary, the present study affords innovative perspectives for the fabrication of MIP-EC sensor with superior analytical performance.
Collapse
Affiliation(s)
- Yi He
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Lijun Luo
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Libo Li
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; Jiangsu Province and Education Ministry Co-sponsored Synergistic Innovation Center of Modern Agricultural Equipment, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Xuegeng Chen
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
2
|
Meng J, Zahran M, Li X. Metal-Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. BIOSENSORS 2024; 14:495. [PMID: 39451708 PMCID: PMC11506703 DOI: 10.3390/bios14100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal-organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers.
Collapse
Affiliation(s)
- Jing Meng
- School of Civil Engineering, Nantong Institute of Technology, Nantong 226002, China
| | - Moustafa Zahran
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
3
|
Li X, Yin X, Wang Z, Ba J, Li J, Wang Y. Chirality-enhanced 2D conductive polymer for flexible electronics and chiral sensing applications. J Colloid Interface Sci 2024; 665:323-328. [PMID: 38531277 DOI: 10.1016/j.jcis.2024.03.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
Chiral two-dimensional (2D) conductive polymers, encompassing chiral, 2D, flexible, and conductive properties, constitute a novel class of material that remains largely unexplored. The infusion of chirality into 2D conductive polymers taps into the unique characteristics associated with chirality, presenting opportunities to enhance or tailor the electronic, optical, and structural properties of materials for specific technological applications. In this study, we synthesized a chiral 2D PEDOT:PMo11V nanofilm through interfacial polymerization, effectively integrating a chiral monolayer, conductive polymer, and inorganic cluster. The inclusion of inorganic cluster serves to enhance the conductivity of the resulting chiral nanofilm. Furthermore, we demonstrated the chiral nanofilm as a capable electrochemical sensor for detecting drug enantiomers. The inherent flexibility of the chiral nanofilm also lays the groundwork for the development of chiral flexible/wearable devices.
Collapse
Affiliation(s)
- Xiaoyan Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Xiuxiu Yin
- College of Chemistry, Jilin University, Changchun 130012, China.
| | - Zimo Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Junjie Ba
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Junpeng Li
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
| | - Yizhan Wang
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Ma G. Electrochemical sensing monitoring of blood lactic acid levels in sweat during exhaustive exercise. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Shen Y, Liu C, He H, Zhang M, Wang H, Ji K, Wei L, Mao X, Sun R, Zhou F. Recent Advances in Wearable Biosensors for Non-Invasive Detection of Human Lactate. BIOSENSORS 2022; 12:1164. [PMID: 36551131 PMCID: PMC9776101 DOI: 10.3390/bios12121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Lactate, a crucial product of the anaerobic metabolism of carbohydrates in the human body, is of enormous significance in the diagnosis and treatment of diseases and scientific exercise management. The level of lactate in the bio-fluid is a crucial health indicator because it is related to diseases, such as hypoxia, metabolic disorders, renal failure, heart failure, and respiratory failure. For critically ill patients and those who need to regularly control lactate levels, it is vital to develop a non-invasive wearable sensor to detect lactate levels in matrices other than blood. Due to its high sensitivity, high selectivity, low detection limit, simplicity of use, and ability to identify target molecules in the presence of interfering chemicals, biosensing is a potential analytical approach for lactate detection that has received increasing attention. Various types of wearable lactate biosensors are reviewed in this paper, along with their preparation, key properties, and commonly used flexible substrate materials including polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), paper, and textiles. Key performance indicators, including sensitivity, linear detection range, and detection limit, are also compared. The challenges for future development are also summarized, along with some recommendations for the future development of lactate biosensors.
Collapse
Affiliation(s)
- Yutong Shen
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Haijun He
- Engineering Research Center for Knitting Technology of the Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mengdi Zhang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Hao Wang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
6
|
Neto DMA, da Costa LS, Sousa CP, Becker H, Casciano PN, Nascimento HO, Neto JRB, de Lima-Neto P, Nascimento RF, Guedes JA, de Oliveira RC, Zampieri D, Correia AN, Fechine PB. Functionalized Fe3O4 nanoparticles for electrochemical sensing of carbendazim. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Bollella P. Enzyme-based amperometric biosensors: 60 years later … Quo Vadis? Anal Chim Acta 2022; 1234:340517. [DOI: 10.1016/j.aca.2022.340517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
|
8
|
Fujisaki H, Matsumoto A, Miyahara Y, Goda T. Sialic acid biosensing by post-printing modification of PEDOT:PSS with pyridylboronic acid. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:525-534. [PMID: 36147749 PMCID: PMC9487965 DOI: 10.1080/14686996.2022.2122867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/21/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
A poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-based conducting polymer, which has biorecognition capabilities, has promising biosensing applications. Previously, we developed a facile method for post-printing chemical modification of PEDOT:PSS thin films from commercial sources. Molecular recognition elements were directly introduced into the PSS side chain by a two-step chemical reaction: introduction of an ethylenediamine linker via an acid chloride reaction of the sulfonate moiety, and subsequent receptor attachment to the linker via amine coupling. In this study, the same method was used to introduce 6-carboxypyridine-3-boronic acid (carboxy-PyBA) into the linker for specifically detecting N-acetylneuraminic acid (sialic acid, SA), as a cancer biomarker. The surface-modified PEDOT:PSS films were characterized by X-ray photoelectron spectroscopy, attenuated total reflection Fourier-transform infrared spectroscopy, and static water contact angle and conductivity measurements. The specific interaction between PyBA and SA was detected by label-free reagent-free potentiometry. The SA-specific negative potential responses of modified PEDOT:PSS electrodes, which was ascribed to an SA carboxyl anion, were observed in a physiologically relevant SA range (1.6-2.9 mM) at pH 5, in a concentration-dependent manner even in the presence of 10% fetal bovine serum. The sensitivity was -2.9 mV/mM in 1-5 mM SA with a limit of detection of 0.7 mM. The sensing performances were almost equivalent to those of existing graphene-based electrical SA sensors. These results show that our chemical derivatization method for printing PEDOT:PSS thin films will have applications in SA clinical diagnostics.
Collapse
Affiliation(s)
- Hideki Fujisaki
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Matsumoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Research and Development, Kanagawa Institute of Industrial Science and Technology (KISTEC), Tokyo, Japan
| | - Yuji Miyahara
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuro Goda
- Department of Biomedical Engineering, Faculty of Science and Engineering, Toyo University, Saitama, Japan
| |
Collapse
|