1
|
Xu K, Zhang P, Zhang Y, Zhang Y, Li L, Shi Y, Wen X, Xu Y. MoO xNWs with mechanical damage - oriented synergistic photothermal / photodynamic therapy for highly effective treating wound infections. J Colloid Interface Sci 2024; 660:235-245. [PMID: 38244492 DOI: 10.1016/j.jcis.2024.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
Reactive oxygen species (ROS)-based therapy has emerged as a promising antibacterial strategy. However, it faces the limitations of uncontrollable space-time release and excessive lipid peroxidation, which may lead to a series of metabolic disorders and decreased immune function. In this study, mechanical damage by molybdenum oxide nanowires (MoOxNWs) is introduced as a synergistic factor to enhance the photothermal and photodynamic effects for controllable and efficient antibacterial therapy. Through their sharp ends, the nanowires can effectively pierce and damage the bacterial cells, thus facilitating the entry of externally generated ROS into the cells. The ROS are generated via photodynamic effect of the nanowires under a mere 5 min of near-infrared light irradiation. This approach enhances the photothermal (by 27.3 %) and photodynamic properties of ROS generation. MoOxNWs (100 μg·mL-1) achieve sterilisation rates of 97.67 % for extended-spectrum β-lactamase-producing E. coli and 96.34 % for methicillin-resistant Staphylococcus aureus, which are comparable or even exceeding the efficacy of most MoOx-based antibacterial agents. Moreover, they exhibit good biocompatibility and low in vivo toxicity.
Collapse
Affiliation(s)
- Kaikai Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Pengfei Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China; Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Yanfang Zhang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Limin Li
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Xueyun Wen
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, 9 Qingdao 266071, China.
| |
Collapse
|
2
|
Sun Q, Dong X, Xu J, Wang T. Silver-infused lysine crosslinked hydrogel with oxidized regenerated cellulose for prospective advanced wound dressings. Int J Biol Macromol 2024; 264:130675. [PMID: 38462109 DOI: 10.1016/j.ijbiomac.2024.130675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
The study aimed to develop a multifunctional wound dressing with enhanced antibacterial properties and wound healing promotion. The synthesis process involved preparing oxidized regenerated cellulose (ORC) following a modified procedure, synthesizing chitosan/silver nanoparticles (CS/Ag NPs) via an in-situ reduction method, and subsequently preparing ORC/CS/Lys@Ag NPs hydrogels. Characterization techniques including FTIR, XRD, SEM, and EDS were employed to analyze functional groups, lattice structure, morphology, and elemental composition. Gelation time, swelling behavior, water retention, mechanical properties, viscosity, self-healing capacity, rheological behavior, oxygen permeability, in vitro degradation, release of Ag+, and antibacterial properties were evaluated using various experimental methods. Results indicated that the novel wound dressing has the capability to evenly distribute Ag NPs to effectively counteract bacteria. It can maintain moist conditions for 86 h, resist a sturdy mechanical pressure of 11.3 KPa, and degrade by 11.045 % ± 0.429 within 8 h. Combining its efficient gas exchange abilities, self-repairing function, and biocompatibility, almost full recovery was observed in injured mouse skin within 13 days, highlighting its promising clinical utility.
Collapse
Affiliation(s)
- Qian Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, Heilongjiang, China
| | - Xielong Dong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, Heilongjiang, China
| | - Juan Xu
- NHC Key Laboratory of Reproductive Health Engineering Technology Research, Haidian district, No.12, Da Hui Si Road, Beijing 100081, China; National Research Institute for Family Planning, Haidian district, No.12, Da Hui Si Road, Beijing 100081, China.
| | - Ting Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 26 Hexing Road, Harbin 150040, Heilongjiang, China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Harbin 150040, China.
| |
Collapse
|
3
|
Huang T, Zhang Y, Zhao L, Ren Y, Wang K, Zhang N, Zhang X, Wang J, Tu Q. Sodium hyaluronate hydrogel for wound healing and human health monitoring based on deep eutectic solvent. Int J Biol Macromol 2024; 257:128801. [PMID: 38101662 DOI: 10.1016/j.ijbiomac.2023.128801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Hydrogel dressings traditionally promote wound healing by maintaining moisture and preventing infection rather than by actively stimulating the skin to regulate cell behavior. Electrical stimulation (ES) is known to modulate skin cell behavior and to promote wound healing. This study describes the first multifunctional conductive hydrogel for wound healing and health monitoring based on a deep eutectic solvent (DES). Sodium hyaluronate and polydopamine constituted the hydrogel skeleton, and tea tree oil and Panax notoginseng extract were used as the active ingredients to induce adhesion, promote antioxidant and antibacterial activity, and support biocompatibility of the hydrogel. The inclusion of DES increases the temperature resistance of the hydrogel and improves its environmental adaptability. We used a small, portable coin battery-powered to provide electrical stimulation. Treatment with both the hydrogel and ES resulted in a stronger therapeutic effect than that provided by the commercial DuoDERM dressing. The hydrogel detected movement and strain when applied as a sensor. Overall, this study reports the development of a multifunctional conductive hydrogel dressing based on DES as a wound healing and health monitor.
Collapse
Affiliation(s)
- Ting Huang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingbing Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Zhao
- The Hospital of NWAFU, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Ren
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Keke Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Nannan Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoli Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinyi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Tu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Natsathaporn P, Herwig G, Altenried S, Ren Q, Rossi RM, Crespy D, Itel F. Functional Fiber Membranes with Antibacterial Properties for Face Masks. ADVANCED FIBER MATERIALS 2023; 5:1-15. [PMID: 37361107 PMCID: PMC10189208 DOI: 10.1007/s42765-023-00291-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/09/2023] [Indexed: 06/28/2023]
Abstract
Reusable face masks are an important alternative for minimizing costs of disposable and surgical face masks during pandemics. Often complementary to washing, a prolonged lifetime of face masks relies on the incorporation of self-cleaning materials. The development of self-cleaning face mask materials requires the presence of a durable catalyst to deactivate contaminants and microbes after long-term use without reducing filtration efficiency. Herein, we generate self-cleaning fibers by functionalizing silicone-based (polydimethylsiloxane, PDMS) fibrous membranes with a photocatalyst. Coaxial electrospinning is performed to fabricate fibers with a non-crosslinked silicone core within a supporting shell scaffold, followed by thermal crosslinking and removal of the water-soluble shell. Photocatalytic zinc oxide nanoparticles (ZnO NPs) are immobilized on the PDMS fibers by colloid-electrospinning or post-functionalization procedures. The fibers functionalized with ZnO NPs can degrade a photo-sensitive dye and display antibacterial properties against Gram-positive and Gram-negative bacteria (Escherichia coli and Staphylococcus aureus) due to the generation of reactive oxygen species upon irradiation with UV light. Furthermore, a single layer of functionalized fibrous membrane shows an air permeability in the range of 80-180 L/m2s and 65% filtration efficiency against fine particulate matter with a diameter less than 1.0 µm (PM1.0). Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00291-7.
Collapse
Affiliation(s)
- Papada Natsathaporn
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Gordon Herwig
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Stefanie Altenried
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - René M. Rossi
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210 Thailand
| | - Fabian Itel
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
5
|
Froelich A, Jakubowska E, Wojtyłko M, Jadach B, Gackowski M, Gadziński P, Napierała O, Ravliv Y, Osmałek T. Alginate-Based Materials Loaded with Nanoparticles in Wound Healing. Pharmaceutics 2023; 15:pharmaceutics15041142. [PMID: 37111628 PMCID: PMC10143535 DOI: 10.3390/pharmaceutics15041142] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Alginate is a naturally derived polysaccharide widely applied in drug delivery, as well as regenerative medicine, tissue engineering and wound care. Due to its excellent biocompatibility, low toxicity, and the ability to absorb a high amount of exudate, it is widely used in modern wound dressings. Numerous studies indicate that alginate applied in wound care can be enhanced with the incorporation of nanoparticles, revealing additional properties beneficial in the healing process. Among the most extensively explored materials, composite dressings with alginate loaded with antimicrobial inorganic nanoparticles can be mentioned. However, other types of nanoparticles with antibiotics, growth factors, and other active ingredients are also investigated. This review article focuses on the most recent findings regarding novel alginate-based materials loaded with nanoparticles and their applicability as wound dressings, with special attention paid to the materials of potential use in the treatment of chronic wounds.
Collapse
Affiliation(s)
- Anna Froelich
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Emilia Jakubowska
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Monika Wojtyłko
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Barbara Jadach
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Michał Gackowski
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Piotr Gadziński
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Olga Napierała
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| | - Yulia Ravliv
- Department of Pharmacy Management, Economics and Technology, I. Horbachevsky Ternopil National Medical University, 36 Ruska Street, 46000 Ternopil, Ukraine
| | - Tomasz Osmałek
- Chair and Department of Pharmaceutical Technology, Poznan University of Medical Sciences, 6 Grunwaldzka Street, 60-780 Poznań, Poland
| |
Collapse
|
6
|
Doğan D, Karaduman FR, Horzum N, Metin AÜ. Boron nitride decorated poly(vinyl alcohol)/poly(acrylic acid) composite nanofibers: A promising material for biomedical applications. J Mech Behav Biomed Mater 2023; 141:105773. [PMID: 36934687 DOI: 10.1016/j.jmbbm.2023.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/09/2023]
Abstract
In this study, polyvinyl alcohol (PVA) and polyacrylic acid (PAA) nanofibers loaded with boron nitride nanoparticles (mBN) were fabricated by using electrospinning and crosslinked by heat treatment. The physical, chemical, and mechanical properties, hydrophilic behavior, and degradability of composite nanofibers were evaluated. The mechanical properties such as elastic modulus, elongation percentage at the break, and mechanical strength of PVA/PAA nanofibers improved with mBN loading. The thermal conductivity of composite nanofibers reached 0.12 W/m·K at mBN content of 1.0 wt% due to the continuous heat conduction pathways of mBN. In the meantime, while there was no cytotoxicity recorded for both L929 and HUVEC cell lines for all composite nanofibers, the antimicrobial efficiency improved with the incorporation of mBN compared with PVA/PAA and recorded as 68.8% and 75.1% for Escherichia coli and Staphylococcus aureus, respectively. On this basis, the present work proposes a promising biomaterial for biomedical applications such as dual drug delivery, particularly including both hydrophobic and hydrophilic drugs or wound dressing.
Collapse
Affiliation(s)
- Deniz Doğan
- Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey
| | - F Rabia Karaduman
- Graduate School of Natural and Applied Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Nesrin Horzum
- Department of Engineering Sciences, Izmir Katip Çelebi University, Izmir, Turkey
| | - Ayşegül Ülkü Metin
- Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| |
Collapse
|
7
|
Lin Y, Chen Z, Liu Y, Wang J, Lv W, Peng R. Recent Advances in Nano-Formulations for Skin Wound Repair Applications. Drug Des Devel Ther 2022; 16:2707-2728. [PMID: 35996567 PMCID: PMC9392552 DOI: 10.2147/dddt.s375541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Skin injuries caused by accidents and acute or chronic diseases place a heavy burden on patients and health care systems. Current treatments mainly depend on preventing infection, debridement, and hemostasis and on supplementing growth factors, but patients will still have scar tissue proliferation or difficulty healing and other problems after treatment. Conventional treatment usually focuses on a single factor or process of wound repair and often ignores the influence of the wound pathological microenvironment on the final healing effect. Therefore, it is of substantial research value to develop multifunctional therapeutic methods that can actively regulate the wound microenvironment and reduce the oxidative stress level at the wound site to promote the repair of skin wounds. In recent years, various bioactive nanomaterials have shown great potential in tissue repair and regeneration due to their properties, including their unique surface interface effect, small size effect, enzyme activity and quantum effect. This review summarizes the mechanisms underlying skin wound repair and the defects in traditional treatment methods. We focus on analyzing the advantages of different types of nanomaterials and comment on their toxicity and side effects when used for skin wound repair.
Collapse
Affiliation(s)
- Yue Lin
- Department of Emergency, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Zheyan Chen
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Yinai Liu
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
| | - Jiawen Wang
- Department of Plastic Surgery, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Wang Lv
- Department of Emergency, The Third Affiliated Hospital of Shanghai University & Wenzhou No. 3 Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People’s Hospital, Wenzhou, People’s Republic of China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, People’s Republic of China
- Correspondence: Renyi Peng, Tel +86 159-5771-6937, Email
| |
Collapse
|