Xiao Z, Zhang X, Hong S, Zhang H, Zhang Y. A platform for microplastic assessment in aquatic environments based on the protein corona-induced aggregation effect.
Biosens Bioelectron 2024;
249:116037. [PMID:
38237214 DOI:
10.1016/j.bios.2024.116037]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
The environmental hazards of microplastics have received widespread attention. However, the in-situ detection of microplastics, particularly in aquatic environments, has been challenged by the limitations of detection methods, the large-scale instruments, and small size. Herein, a photoelectrochemical sensor based on the protein corona-induced aggregation effect is designed for the detection of polystyrene microplastics. The sensor has advantages of high sensitivity, reproducibility, and detection capability. A linear detection range of 0.5-500 μg mL-1, a method detection limit of 0.06 μg mL-1, and a limit of quantification of 0.14 μg mL-1 are achieved. Furthermore, the relative standard deviations of intra-day and inter-day precision, ranging from 0.56% to 4.63% and 0.84%-3.36% are obtained. A digital multimeter was employed to construct a platform for the real-time detection in real water samples, streamlining the detection process and yielding clear results. We believe this sensor provides new insight for the in-situ real-time detection of microplastics and has broad applications for the analysis of microplastic pollution in aquatic environments.
Collapse