1
|
Sutar SD, Patil I, Parse H, Mukherjee P, Swami A. MXene-Derived TiO 2/Starbon Nanocomposite as a Remarkable Electrode Material for Coin-Cell Symmetric Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403552. [PMID: 38963327 DOI: 10.1002/smll.202403552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/20/2024] [Indexed: 07/05/2024]
Abstract
In this study, the synthesis of a MXene (Ti3C2Tx)-derived TiO2/starbon (M-TiO2/Starbon-800 °C) nanocomposite using a facile calcination method is explored. High-temperature exposure transforms layered Ti3C2Tx into rod-like TiO2 and starbon into amorphous carbon. The resulting M-TiO2/Starbon-800 °C nanocomposite exhibits a significantly larger surface area and pore volume compared to its individual components, leading to superior electrochemical performance. In a three-electrode configuration, the nanocomposite achieved a specific capacitance (Csp) of 1352 Fg⁻¹ at 1 Ag⁻¹, while retaining more than 99% of its Csp after 50 000 charge/discharge cycles. Furthermore, when incorporated into a two-electrode symmetric coin cell, it demonstrates a Csp of 115 Fg⁻¹ along with exceptional long cycle life. Moreover, the device shows an energy density (ED) of 51 Whkg-1 and a power density (PD) of 7912 Wkg-1 at 5 Ag-1. The enhanced charge storage is attributed to the formation of a porous structure with a high specific surface area resulting from the interaction between M-TiO2 nanorods and starbon, which facilitates efficient ion penetration.
Collapse
Affiliation(s)
- Sanjay D Sutar
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Indrajit Patil
- Institute for Technical Chemistry and Environmental, Chemistry (ITUC) and Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich-Schiller-University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Haridas Parse
- Department of Materials Science and Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Prateekshita Mukherjee
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| | - Anita Swami
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603203, India
| |
Collapse
|
2
|
Liang JJ, Lin YC, Chang ZH, Wang X. Improved capacitive performances and electrocatalytic reduction activity by regulating the bonding interaction between Zn-bistriazole-pyrazine/pyridine units and diverse Anderson-type polyoxometalates. Dalton Trans 2024. [PMID: 38265330 DOI: 10.1039/d3dt04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Electrochemical performances can be effectively improved by introducing metal-organic units (MOUs) into polyoxometalates (POMs). However, regulating the bonding strength between POMs and MOUs at the molecular level to improve the electrochemical performance is a challenging task. Three new POM-based metal-organic complexes (MOCs), namely H{Zn2(Hpytty)2(H2O)8[CrMo6(OH)6O18]}·2H2O (1), H{Zn2(Hpyttz)2(H2O)6[CrMo6(OH)6O18]}·8H2O (2), and {(μ2-OH)2Zn6(pyttz)2(H2O)10[TeMo6O24]}·2H2O (3) (H2pytty = 3-(pyrazin-2-yl)-5-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl, H2pyttz = 3-(pyrid-2-yl)-5-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl), were obtained. Single-crystal X-ray diffraction shows that the bonding strength (from the hydrogen bond to the coordination bond) between Zn-bistriazole-pyrazine/pyridine units and diverse Anderson-type POMs gradually increases from complexes 1 to 3. Glassy carbon electrodes modified with complex 3 (3-GCE) has the highest specific capacitance, which is 930 F g-1 at 1 A g-1. Moreover, carbon paste electrodes (1-3-CPEs) modified with complexes 1-3 are used as electrochemical sensors for detecting Cr(VI) ions, with limits of detection well below the World Health Organization (WHO) maximum level in drinking water.
Collapse
Affiliation(s)
- Ju-Ju Liang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Yu-Chun Lin
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Zhi-Han Chang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| |
Collapse
|
3
|
Hou Y, Han P, Li H, Zhang S, Qin M, Zhang N, Fu B, Mao R, Ge S. Bifunctional 3D POM-based coordination polymers for improved pseudocapacitance and catalytic oxidation performance. Dalton Trans 2024; 53:1541-1550. [PMID: 38164075 DOI: 10.1039/d3dt03650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Developing novel high-efficiency supercapacitors as energy storage devices to solve the energy crisis is of vital significance. Meanwhile, designing highly active and selective oxidation catalysts for various sulfides is desirable but still a big challenge. To work out these problems, three novel 3D POM-based coordination polymers (POMCPs), formulated as [{Ag6(pytz)4}{SiMo12O40}] (1), [{Cu3(pytz)4}{SiMo12O40}]·5.5H2O (2) and [{Cu6(pytz)6}{SiMo12O40}]·2H2O (3) (pytz = 4-(5-(4-pyridyl)-1H-tetrazole)), are successfully prepared via a one-step synthetic strategy by changing different temperatures under hydrothermal or solvothermal conditions. In compounds 1 and 2, {SiMo12}, as 9-capped and 2-capped polyoxoanions, are engaged among the 2D Ag/Cu-organic sheets to generate the novel 3D POM-based coordination polymers. In addition, 1D Cu-organic chains are combined with 3-capped {SiMo12} polyoxoanions to construct 2D POM-based coordination polymers in 3. To our delight, as electrode materials for supercapacitors, the three compounds exhibit excellent specific capacitances of 261.76 F g-1, 248.82 F g-1 and 156.47 F g-1 at 0.5 A g-1, respectively. Besides, they can effectively and selectively catalyze the oxidation of various sulfides to sulfoxides.
Collapse
Affiliation(s)
- Yujiao Hou
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Peilin Han
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Hao Li
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Shixing Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Mengge Qin
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Nan Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Bingbing Fu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Ruitao Mao
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Suxiang Ge
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| |
Collapse
|
4
|
Prabhakar Vattikuti SV, Shim J, Rosaiah P, Mauger A, Julien CM. Recent Advances and Strategies in MXene-Based Electrodes for Supercapacitors: Applications, Challenges and Future Prospects. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:62. [PMID: 38202517 PMCID: PMC10780966 DOI: 10.3390/nano14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
With the growing demand for technologies to sustain high energy consumption, supercapacitors are gaining prominence as efficient energy storage solutions beyond conventional batteries. MXene-based electrodes have gained recognition as a promising material for supercapacitor applications because of their superior electrical conductivity, extensive surface area, and chemical stability. This review provides a comprehensive analysis of the recent progress and strategies in the development of MXene-based electrodes for supercapacitors. It covers various synthesis methods, characterization techniques, and performance parameters of these electrodes. The review also highlights the current challenges and limitations, including scalability and stability issues, and suggests potential solutions. The future outlooks and directions for further research in this field are also discussed, including the creation of new synthesis methods and the exploration of novel applications. The aim of the review is to offer a current and up-to-date understanding of the state-of-the-art in MXene-based electrodes for supercapacitors and to stimulate further research in the field.
Collapse
Affiliation(s)
| | - Jaesool Shim
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (S.V.P.V.); (J.S.)
| | - Pitcheri Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India;
| | - Alain Mauger
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| | - Christian M. Julien
- Institut de Minéralogie, de Physique des Matériaux et de Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75005 Paris, France;
| |
Collapse
|
5
|
Goberna-Ferrón S, Cots L, Perxés Perich M, Zhu JJ, Gómez-Romero P. Polyoxometalate-Stabilized Silver Nanoparticles and Hybrid Electrode Assembly Using Activated Carbon. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2241. [PMID: 37570559 PMCID: PMC10421052 DOI: 10.3390/nano13152241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
The intersection between the field of hybrid materials and that of electrochemistry is a quickly expanding area. Hybrid combinations usually consist of two constituents, but new routes toward more complex and versatile electroactive hybrid designs are quickly emerging. The objective of the present work is to explore novel triple hybrid material integrating polyoxometalates (POMs), silver nanoparticles (Ag0 NPs), and activated carbon (AC) and to demonstrate its use as a hybrid electrode in a symmetric supercapacitor. The tri-component nanohybrid (AC/POM-Ag0 NPs) was fabricated through the combination of AC with pre-synthesized ∼27 nm POM-protected Ag0 NPs (POM-Ag0 NPs). The POM-Ag0 NPs were prepared using a green electrochemical method and characterized via UV-vis and IR spectroscopy, electron microscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV). Afterward, the AC/POM-Ag0 NPs ternary nanocomposite material was constructed and characterized. The electrochemical behavior of AC/POM-Ag0 NPs' modified electrodes reveal that the nanomaterial is electroactive and exhibits a moderately higher specific capacitance (81 F/g after 20 cycles) than bare AC electrodes (75 F/g) in a symmetrical supercapacitor configuration in the voltage range 0 to 0.75 V and 20 mV/s, demonstrating the potential use of this type of tri-component nanohybrid for electrochemical applications.
Collapse
Affiliation(s)
- Sara Goberna-Ferrón
- Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. De los Naranjos s/n, 46022 Valencia, Spain
| | - Laia Cots
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain (P.G.-R.)
| | - Marta Perxés Perich
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Jun-Jie Zhu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain (P.G.-R.)
| | - Pedro Gómez-Romero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain (P.G.-R.)
| |
Collapse
|
6
|
Jiang T, Wang Y, Chen GZ. Electrochemistry of Titanium Carbide MXenes in Supercapacitor. SMALL METHODS 2023; 7:e2201724. [PMID: 37127861 DOI: 10.1002/smtd.202201724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Novel electrode materials are always explored to achieve better performance of supercapacitors. Titanium carbide MXenes, Ti3 C2 Tx , are one of the very promising candidates for electrode materials in supercapacitors due to their unique structural and ion storage properties as 2D materials. Their large specific surface area, adjustable functionalized surface terminals, high electrical conductivities, hydrophilicity, and high Faradaic capacitance, also known widely but confusingly as pseudocapacitance, are highly desirable for making high-performance electrodes with increased dis-/charging rates and capacities. Herein, some selective electrochemical considerations of Ti3 C2 Tx MXenes for uses in supercapacitors are critically reviewed and assessed, aiming at a better fundamental understanding of the electrochemical basics and processes in Ti3 C2 Tx MXene-based electrode materials for supercapacitor applications.
Collapse
Affiliation(s)
- Tingting Jiang
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Yichen Wang
- The State Key Laboratory of Refractories and Metallurgy, College of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - George Z Chen
- Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham, Nottingham, NG2 7RD, UK
| |
Collapse
|
7
|
Zhu Y, Ma J, Das P, Wang S, Wu ZS. High-Voltage MXene-Based Supercapacitors: Present Status and Future Perspectives. SMALL METHODS 2023; 7:e2201609. [PMID: 36703554 DOI: 10.1002/smtd.202201609] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/30/2022] [Indexed: 06/18/2023]
Abstract
As an emerging class of 2D materials, MXene exhibits broad prospects in the field of supercapacitors (SCs). However, the working voltage of MXene-based SCs is relatively limited (typically ≤ 0.6 V) due to the oxidation of MXene electrode and the decomposition of electrolyte, ultimately leading to low energy density of the device. To solve this issue, high-voltage MXene-based electrodes and corresponding matchable electrolytes are developed urgently to extend the voltage window of MXene-based SCs. Herein, a comprehensive overview and systematic discussion regarding the effects of electrolytes (aqueous, organic, and ionic liquid electrolytes), asymmetric device configuration, and material modification on the operating voltage of MXene-based SCs, is presented. A deep dive is taken into the latest advances in electrolyte design, structure regulation, and high-voltage mechanism of MXene-based SCs. Last, the future perspectives on high-voltage MXene-based SCs and their possible development directions are outlined and discussed in depth, providing new insights for the rational design and realization of advanced next-generation MXene-based electrodes and high-voltage electrolytes.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou, 234000, China
| | - Jiaxin Ma
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Pratteek Das
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Sen Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Dalian National Laboratory for Clean Energy, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
8
|
Zhang L, Di S, Lin H, Wang C, Yu K, Lv J, Wang C, Zhou B. Nanomaterial with Core-Shell Structure Composed of {P 2W 18O 62} and Cobalt Homobenzotrizoate for Supercapacitors and H 2O 2-Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1176. [PMID: 37049271 PMCID: PMC10097129 DOI: 10.3390/nano13071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Designing and preparing dual-functional Dawson-type polyoxometalate-based metal-organic framework (POMOF) energy storage materials is challenging. Here, the Dawson-type POMOF nanomaterial with the molecular formula CoK4[P2W18O62]@Co3(btc)2 (abbreviated as {P2W18}@Co-BTC, H3btc = 1,3,5-benzylcarboxylic acid) was prepared using a solid-phase grinding method. XRD, SEM, TEM et al. analyses prove that this nanomaterial has a core-shell structure of Co-BTC wrapping around the {P2W18}. In the three-electrode system, it was found that {P2W18}@Co-BTC has the best supercapacitance performance, with a specific capacitance of 490.7 F g-1 (1 A g-1) and good stability, compared to nanomaterials synthesized with different feedstock ratios and two precursors. In the symmetrical double-electrode system, both the power density (800.00 W kg-1) and the energy density (11.36 Wh kg-1) are greater. In addition, as the electrode material for the H2O2 sensor, {P2W18}@Co-BTC also exhibits a better H2O2-sensing performance, such as a wide linear range (1.9 μM-1.67 mM), low detection limit (0.633 μM), high selectivity, stability (92.4%) and high recovery for the detection of H2O2 in human serum samples. This study provides a new strategy for the development of Dawson-type POMOF nanomaterial compounds.
Collapse
Affiliation(s)
- Lanyue Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Shan Di
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Hong Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
9
|
Wang C, Song Y, Cong W, Yan Y, Wang M, Zhou J. From surface loading to precise confinement of polyoxometalates for electrochemical energy storage. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
10
|
Perera A, Madhushani K, Punchihewa BT, Kumar A, Gupta RK. MXene-Based Nanomaterials for Multifunctional Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1138. [PMID: 36770145 PMCID: PMC9920486 DOI: 10.3390/ma16031138] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
MXene is becoming a "rising star" material due to its versatility for a wide portfolio of applications, including electrochemical energy storage devices, electrocatalysis, sensors, biomedical applications, membranes, flexible and wearable devices, etc. As these applications promote increased interest in MXene research, summarizing the latest findings on this family of materials will help inform the scientific community. In this review, we first discuss the rapid evolutionary change in MXenes from the first reported M2XTx structure to the last reported M5X4Tx structure. The use of systematically modified synthesis routes, such as foreign atom intercalation, tuning precursor chemistry, etc., will be further discussed in the next section. Then, we review the applications of MXenes and their composites/hybrids for rapidly growing applications such as batteries, supercapacitors, electrocatalysts, sensors, biomedical, electromagnetic interference shielding, membranes, and flexible and wearable devices. More importantly, we notice that its excellent metallic conductivity with its hydrophilic nature distinguishes MXene from other materials, and its properties and applications can be further modified by surface functionalization. MXene composites/hybrids outperform pristine MXenes in many applications. In addition, a summary of the latest findings using MXene-based materials to overcome application-specific drawbacks is provided in the last few sections. We hope that the information provided in this review will help integrate lab-scale findings into commercially viable products.
Collapse
Affiliation(s)
- A.A.P.R. Perera
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| | - K.A.U. Madhushani
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| | | | - Anuj Kumar
- Nano-Technology Research Laboratory, Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Ram K. Gupta
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
- National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS 66762, USA
| |
Collapse
|
11
|
Zhu JJ, Gomez-Romero P. Polyoxometalate intercalated MXene with enhanced electrochemical stability. NANOSCALE 2022; 14:14921-14934. [PMID: 36018283 DOI: 10.1039/d2nr01410f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
MXene/polyoxometalate (POM) hybrids are useful target materials for a variety of applications. Yet, the goal of preparing simple binary hybrids by intercalation of POMs into MXene has not been achieved. We propose and demonstrate here a method to intercalate POMs (phosphotungstate, PW12) into Ti3C2Tx MXene through the interaction between POM anions and pre-intercalated surfactant cations. A variety of quaternary ammonium cations have been used to expand Ti3C2Tx interlayer spacing. Cetyltrimethylammonium cations (CTA+) lead to an expansion of 2 nm while allowing intercalation of a considerable load (10 wt%) thanks to their tadpole-like shape and size. CTAPW12 has a layered structure compatible with Ti3C2Tx. The CTA+-delaminated Ti3C2Tx keeps the large interlayer spacing after being coupled with PW12. The PW12 clusters are dispersed and kept isolated thanks to CTA surfactant and the confinement into Ti3C2Tx layers. The redox reactions in CTA+-delaminated Ti3C2Tx/PW12 are diffusion-controlled, which proves the well-dispersed PW12 clusters are not adsorbed on the surface of Ti3C2Tx particles but within Ti3C2Tx layers. The CTA+- delaminated Ti3C2Tx/PW12 shows superior electrochemical stability (remaining redox active after 5000 cycles) over the other MXene/POM hybrids prepared in this work (inactive after 500 cycles). We associate this improved stability to the effective intercalation of PW12 within Ti3C2Tx layers helped by the CTA cations, as opposed to the external aggregation of PW12 clusters into micro or nanocrystals taking place for the other cations. The results provide a solid guide to help develop high-performance MXene/POM hybrid materials for a variety of applications.
Collapse
Affiliation(s)
- Jun-Jie Zhu
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Pedro Gomez-Romero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Consejo Superior de Investigaciones Científicas (CSIC), Spain
| |
Collapse
|