1
|
He C, Chen D, Zhang WX. Machine learning-driven shortening the screening process towards high-performance nitrogen reduction reaction electrocatalysts with four-step screening strategy. J Colloid Interface Sci 2024; 676:22-32. [PMID: 39018807 DOI: 10.1016/j.jcis.2024.07.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
The urgent need to prepare clean energy by environmentally friendly and efficient methods, which has led to widespread attention on electrocatalytic nitrogen reduction reaction (NRR) for ammonia production. At present, single atom catalytic nitrogen reduction has become the earliest promising method for industrial production due to its high atomic utilization rate, high selectivity, high controllability, and high stability. However, how to quickly screen catalysts with high catalytic efficiency and selectivity in single-atom catalysts (SACs) remains a challenge. Herein, the 29 SACs are constructed from C6N2 nanosheets doped with transition metals (TM@C6N2), which are analyzed for stability, adsorption performance, NRR catalytic activity, electronic properties, and competitiveness using first-principles calculations. The results show that Mo@C6N2 and Re@C6N2 exhibit the most outstanding catalytic performances, with limiting potentials (UL) of -0.29 and -0.31 V, respectively, in the solvent model. Machine learning is used to derive descriptors from the intrinsic features to predict the free energy changes for the potential-determining step. The importance of features is calculated, with the first ionisation energy (IE1) being the most significant influencing factor. Based on the guidance of machine learning and considering that IE1 is related to the ability of metal atoms to donate electrons, a four-step screening strategy using the Integrated Crystal Orbital Hamilton Populations (ICOHP) to screen catalysts instead of the traditional five-step screening not only improves the screening efficiency but also obtains completely consistent screening results. This work presents a new approach to predicting the catalytic performance of SACs and provides new insights into the influence of intrinsic properties on catalytic activity.
Collapse
Affiliation(s)
- C He
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - D Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - W X Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710064, China.
| |
Collapse
|
2
|
Li SL, Chen Y, Tian G, Kou L, Qiao L, Zhao Y, Gan LY. High catalytic activity and abundant active sites in M 2C 12 monolayer for nitrogen reduction reaction. J Colloid Interface Sci 2024; 675:411-418. [PMID: 38976967 DOI: 10.1016/j.jcis.2024.06.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.
Collapse
Affiliation(s)
- Shu-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China; Western Superconducting Technologies Co, Ltd., Xi'an 710018, China
| | - Yutao Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guo Tian
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China.
| | - Yong Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
3
|
Li N, Guo K, Lu S, Bao L, Yu Z, Lu X. Fullerene as a probe molecule for single-atom oxygen reduction electrocatalysts. Chem Commun (Camb) 2024; 60:11964-11967. [PMID: 39351811 DOI: 10.1039/d4cc03901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Fullerenes interact positively with many metal-based catalysts via intense electron transfer. Yet, we here revealed that C60 serves as a probe due to its deactivation of the active sites of single-atom O2 reduction electrocatalysts. C60 adsorption to metal atoms creates steric hindrance that restricts the access of O2 to the active sites.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Song Lu
- Institute of New Energy, School of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
4
|
Chang X, Zheng W, Wen S, Li C, Liu X, Zhang J. Electronic Modulation of Doped MoS 2 Nanosheets for Improved CO 2 Sensing and Capture. J Phys Chem Lett 2024; 15:8660-8666. [PMID: 39158937 DOI: 10.1021/acs.jpclett.4c01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Transition-metal dichalcogenides (TMDs) are widely used in the gas sensing field, owing to their high surface-to-volume ratio enabled by the two-dimensional (2D) structure, adjustable band gap, and high electron transfer. However, it is challenging for TMD materials to realize superior CO2 sensing, due to their weak CO2 adsorption capacity. Herein, we predict through density functional theory (DFT) calculations that rare earth metal doping is an effective strategy to boost the CO2 sensing capability of TMDs. As a proof-of-concept, we investigate and find that the introduction of rare earth metal atoms (La, Ce, Pr, or Nd) can induce lattice strain and modulate the electronic properties of MoS2. When negative charges are injected in rare earth metal doped MoS2 (R-MoS2), the 5d or 4f orbital of the rare earth metal atom in R-MoS2 can produce a stronger orbital hybridization with 2p orbitals of C and O in CO2. Therefore, the CO2 adsorption is significantly enhanced and the charge transfer is facilitated for negatively charged R-MoS2. Moreover, negatively charged R-MoS2 exhibits an excellent CO2 selectivity. Our results indicate that the rare earth metal doping and electronic modulation in 2D materials may provide a new pathway for CO2 sensing and capture.
Collapse
Affiliation(s)
- Xiao Chang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Wenyang Zheng
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Shaoting Wen
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Chang Li
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, China
| |
Collapse
|
5
|
Li Q, Li W, Liu D, Ma Z, Ye Y, Zhang Y, Chen Q, Cheng Z, Chen Y, Sa R. Advancing electrochemical nitrogen reduction: Efficacy of two-dimensional SiP layered structures with single-atom transition metal catalysts. J Colloid Interface Sci 2024; 668:399-411. [PMID: 38685165 DOI: 10.1016/j.jcis.2024.04.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
Researchers are interested in single-atom catalysts with atomically scattered metals relishing the enhanced electrocatalytic activity for nitrogen reduction and 100 % metal atom utilization. In this paper, we investigated 18 transition metals (TM) spanning 3d to 5d series as efficient nitrogen reduction reaction (NRR) catalysts on defective 2D SiPV layered structures through first-principles calculation. A systematic screening identified Mo@SiPV, Nb@SiPV, Ta@SiPV and W@SiPV as superior, demonstrating enhanced ammonia synthesis with significantly lower limiting potentials (-0.25, -0.45, -0.49 and -0.15 V, respectively), compared to the benchmark -0.87 eV for the defective SiP. In addition, the descriptor ΔG*N was introduced to establish the relationship between the different NRR intermediates, and the volcano plot of the limiting potentials were determined for their potential-determining steps (PDS). Remarkably, the limiting voltage of the NRR possesses a good linear relationship with the active center TM atom Ɛd, which is a reliable descriptor for predicting the limiting voltage. Furthermore, we verified the stability (using Ab Initio Molecular Dynamics - AIMD) and high selectivity (UL(NRR)-UL(HER) > -0.5 V) of these four catalysts in vacuum and solvent environments. This study systematically demonstrates the strong catalytic potential of 2D TM@SiPV(TM = Mo, Nb, Ta, W) single-atom catalysts for nitrogen reduction electrocatalysis.
Collapse
Affiliation(s)
- Qingyu Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007
| | - Weiguo Li
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007
| | - Diwen Liu
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China.
| | - Zuju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yuansong Ye
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Yanjie Zhang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Qiang Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China.
| | - Zhibing Cheng
- Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007
| | - Yiting Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Rongjian Sa
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Key Laboratory of Polymer Materials, College of Materials Science and Engineering, Fujian Normal University, Fuzhou 350007.
| |
Collapse
|
6
|
Khedr GE, Fawzy SM, Sharafeldin IM, Allam NK. Designing N, P-doped graphene surface-supported Mo single-atom catalysts for efficient conversion of nitrogen into ammonia: a computational guideline. NANOSCALE ADVANCES 2024; 6:4160-4166. [PMID: 39114149 PMCID: PMC11304078 DOI: 10.1039/d4na00298a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/11/2024] [Indexed: 08/10/2024]
Abstract
Tuning the surroundings of single-atom catalysts (SACs) has been recognized as a successful approach to enhance their electrocatalytic efficiency. In this study, we utilized density functional theory (DFT) computations to systematically investigate how the coordination environment influences the catalytic performance of individual molybdenum atoms for the nitrogen reduction reaction (NRR) to NH3. Upon comparing an extensive array of coordination combinations, Mo-based SACs were found to feature a distinctive N, P-dual coordination. Specifically, MoN3P1G demonstrates superior performance in the conversion of nitrogen into ammonia with an exceptionally low limiting potential (-0.64 V). This MoN3P1G catalyst preferably follows the distal pathway, with the initial hydrogenation step (*N2 → *NNH) being the rate-determining step. Additionally, MoN3P1G exhibits the ability to suppress competing H2 production, showcases high thermodynamic stability, and holds significant promise for experimental preparation. These findings not only contribute to diversifying the SAC family through localized coordination control but also present cost-effective strategies for enhancing sustainable NH3 production.
Collapse
Affiliation(s)
- Ghada E Khedr
- Department of Analysis & Evaluation, Egyptian Petroleum Research Institute (EPRI) Cairo 11727 Egypt
| | - Samar M Fawzy
- Energy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Icell M Sharafeldin
- Energy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, Physics Department, School of Sciences & Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
7
|
Tryba B, Prowans B, Wróbel RJ, Szołdra P, Pichór W. Application of TiO 2 Supported on Nickel Foam for Limitation of NO x in the Air via Photocatalytic Processes. Molecules 2024; 29:1766. [PMID: 38675585 PMCID: PMC11052280 DOI: 10.3390/molecules29081766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
TiO2 was loaded on the porous nickel foam from the suspended ethanol solution and used for the photocatalytic removal of NOx. Such prepared material was heat-treated at various temperatures (400-600 °C) to increase the adhesion of TiO2 with the support. Obtained TiO2/nickel foam samples were characterized by XRD, UV-Vis/DR, FTIR, XPS, AFM, SEM, and nitrogen adsorption at 77 K. Photocatalytic tests of NO abatement were performed in the rectangular shape quartz reactor, irradiated from the top by UV LED light with an intensity of 10 W/m2. For these studies, a laminar flow of NO in the air (1 ppm) was applied under a relative humidity of 50% and a temperature of 28 °C. Concentrations of both NO and NO2 were monitored by a chemiluminescence NO analyzer. The adsorption of nitrogen species on the TiO2 surface was determined by FTIR spectroscopy. Performed studies revealed that increased temperature of heat treatment improves adhesion of TiO2 to the nickel foam substrate, decreases surface porosity, and causes removal of hydroxyl and alcohol groups from the titania surface. The less hydroxylated surface of TiO2 is more vulnerable to the adsorption of NO2 species, whereas the presence of OH groups on TiO2 enhances the adsorption of nitrate ions. Adsorbed nitrate species upon UV irradiation and moisture undergo photolysis to NO2. As a consequence, NO2 is released into the atmosphere, and the efficiency of NOx removal is decreasing. Photocatalytic conversion of NO to NO2 was higher for the sample heated at 400 °C than for that at 600 °C, although coverage of nickel foam by TiO2 was lower for the former one. It is stated that the presence of titania defects (Ti3+) at low temperatures of its heating enhances the adsorption of hydroxyl groups and the formation of hydroxyl radicals, which take part in NO oxidation. Contrary to that, the presence of titania defects in TiO2 through the formation of ilmenite structure (NiTiO3) in TiO2/nickel foam heated at 600 °C inhibits its photocatalytic activity. No less, the sample obtained at 600 °C indicated the highest abatement of NOx due to the high and stable adsorption of NO2 species on its surface.
Collapse
Affiliation(s)
- Beata Tryba
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (B.P.); (R.J.W.)
| | - Bartłomiej Prowans
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (B.P.); (R.J.W.)
| | - Rafał Jan Wróbel
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Pułaskiego 10, 70-322 Szczecin, Poland; (B.P.); (R.J.W.)
| | - Paulina Szołdra
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland; (P.S.); (W.P.)
| | - Waldemar Pichór
- Department of Building Materials Technology, Faculty of Materials Science and Ceramics, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland; (P.S.); (W.P.)
| |
Collapse
|
8
|
Li Q, Li W, Cao J, Zhou J, Li D, Ao Z. Unveiling the intrinsic role of water in the catalytic cycle of formaldehyde oxidation: a comprehensive study integrating density functional theory and microkinetic analysis. Phys Chem Chem Phys 2023; 25:30670-30678. [PMID: 37933752 DOI: 10.1039/d3cp04339h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Previous research is predominantly in consensus on the reaction mechanism between formaldehyde (HCHO) and oxygen (O2) over catalysts. However, water vapor (H2O) always remains present during the reaction, and the intrinsic role of H2O in the oxidation of HCHO still needs to be fully understood. In this study, a single-atom catalyst, Al-doped C2N substrate, Al1/C2N, can be adopted as an example to investigate the relationship and interaction among O2, H2O, and HCHO. Density functional theory (DFT) calculations and microkinetic simulations were carried out to interpret the enhancement mechanism of H2O on HCHO oxidation over Al1/C2N. The outcome demonstrates that H2O directly breaks down a surface hydroxyl group on Al1/C2N, considerably lowering the energy required to form crucial intermediates, thus promoting oxidation. Without H2O, Al1/C2N cannot effectively oxidize HCHO at ambient temperature. During oxidation, H2O takes the major catalytic responsibility, delaying the entrance of O2 into the reaction, which is not only the product but also the crucial reactant to initiate catalysis, thereby sustaining the catalytic cycle. Moreover, this study predicts the catalytic behavior at various temperatures and presents feasible recommendations for regulating the reaction rates. The oxidation mechanism of HCHO is explained at the molecular level in this study, emphasizing the intrinsic role of water on Al1/C2N, which fills in the relevant studies for HCHO oxidation on two-dimensional carbon materials.
Collapse
Affiliation(s)
- Qianyu Li
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
- School of Environment, Beijing Normal University, Beijing 100875, P. R. China
| | - Wenlang Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jiachun Cao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Junhui Zhou
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
| | - Didi Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, Guangzhou 510006, P. R. China
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhimin Ao
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, P. R. China.
| |
Collapse
|
9
|
Wang H, Li X, Wu J, Zhang D. An Experimental and Density Functional Theory Simulation Study of NO Reduction Mechanisms over Fe 0 Supported on Graphene with and without CO. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15369-15379. [PMID: 37862119 DOI: 10.1021/acs.langmuir.3c02461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
NO reduction over highly dispersed zerovalent iron (Fe0) supported on graphene (G), with and without the presence of CO in the reacting stream, was systematically studied using a fixed-bed reactor, and the reaction mechanism was examined with the aid of in situ Fourier transform infrared (FTIR) spectroscopy and density functional theory (DFT) calculations. The in situ FTIR results showed that NO adsorbed on the Fe0 site is reduced to form active surface oxygen species (O*), which is then reduced by carbon in graphene to form CO2. The presence of CO in the reacting stream helps to reduce the oxidized Fe(O) sites to regenerate Fe0 sites, making NO reduction easier. It was revealed that NO and CO2 are easily adsorbed on the active surface oxygen species (O*) to form nitrate and carbonate, inhibiting their reduction by CO and deactivating the catalyst. The DFT calculations results suggest that the role of Fe is to reduce the energy barrier of the NO adsorption and decomposition, which controls the formation of active surface oxygen species and N2. The combined FTIR and DFT results offer new insights into the possible mechanism of catalytic NO reduction over graphene loaded with Fe, with and without CO.
Collapse
Affiliation(s)
- Huanran Wang
- Liaoning Provincial Engineering Research Centre for Advanced Coking and Coal Utilization, University of Science and Technology Liaoning, Anshan 114051, China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Xianchun Li
- Liaoning Provincial Engineering Research Centre for Advanced Coking and Coal Utilization, University of Science and Technology Liaoning, Anshan 114051, China
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Junzhi Wu
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- Shanxi Institute of Energy, Taiyuan, Shanxi 030006, China
| | - Dongke Zhang
- Centre for Energy (M473), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Hermawan A, Alviani VN, Wibisono, Seh ZW. Fundamentals, rational catalyst design, and remaining challenges in electrochemical NO x reduction reaction. iScience 2023; 26:107410. [PMID: 37593457 PMCID: PMC10428125 DOI: 10.1016/j.isci.2023.107410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023] Open
Abstract
Nitrogen oxides (NOx) emissions carry pernicious consequences on air quality and human health, prompting an upsurge of interest in eliminating them from the atmosphere. The electrochemical NOx reduction reaction (NOxRR) is among the promising techniques for NOx removal and potential conversion into valuable chemical feedstock with high conversion efficiency while benefiting energy conservation. However, developing efficient and stable electrocatalysts for NOxRR remains an arduous challenge. This review provides a comprehensive survey of recent advancements in NOxRR, encompassing the underlying fundamentals of the reaction mechanism and rationale behind the design of electrocatalysts using computational modeling and experimental efforts. The potential utilization of NOxRR in a Zn-NOx battery is also explored as a proof of concept for concurrent NOx abatement, NH3 synthesis, and decarbonizing energy generation. Despite significant strides in this domain, several hurdles still need to be resolved in developing efficient and long-lasting electrocatalysts for NOx reduction. These possible means are necessary to augment the catalytic activity and electrocatalyst selectivity and surmount the challenges of catalyst deactivation and corrosion. Furthermore, sustained research and development of NOxRR could offer a promising solution to the urgent issue of NOx pollution, culminating in a cleaner and healthier environment.
Collapse
Affiliation(s)
- Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Vani Novita Alviani
- Graduate School of Environmental Studies, Tohoku University, Sendai 9808579, Japan
| | - Wibisono
- Research Center for Radiation Detection and Nuclear Analysis Technology, National Research and Innovation Agency (BRIN), South Tangerang City, Banten 15314, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
11
|
Yang L, Fan J, Zhu W. Single silicon-doped CNT as a metal-free electrode for robust nitric oxide reduction utilizing a Lewis base site: an ingenious electronic "Reflux-Feedback" mechanism. Phys Chem Chem Phys 2023; 25:13072-13079. [PMID: 37114943 DOI: 10.1039/d3cp00677h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The electrocatalytic reduction of nitric oxide (NO) has become the most charming approach for the sustainable synthesis of ammonia (NH3), however, the development of a valid catalyst endowed with low cost, high efficiency, and long-term endurance still faces an enormous challenge. In view of the famous concept of "donate and accept", various transition metal-based electrodes have been predicted and brought into production for electrocatalysis, but metal-free materials or novel activation mechanisms are rarely reported. Here, metal-free electrocatalysts, namely individual silicon (Si) atom-embedded single-walled carbon nanotubes (CNTs), for the NO reduction reaction (NORR) were put forward by performing first-principles calculations. The results disclose that the discarded NO can be converted into value-added NH3 on Si-CNT(10, 0) with a limiting potential of -0.25 V. Importantly, the doped Si atom acts as a Lewis base site that drives some of the p-orbital electrons to return to the surrounding carbon atoms and then feed adequate electron back to intermediates, rendering it more flat for the electroreduction progress. In summary, the designed carbon-based electrode holds great promise for experimental trial and offers a certain degree of theoretical guidance.
Collapse
Affiliation(s)
- Lei Yang
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jiake Fan
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
12
|
Chen A, Han Y, Wang Z, Cai J, Ye S, Li J. Single atom modified two-dimensional bismuthenes for toxic gas detection. Phys Chem Chem Phys 2023; 25:9249-9255. [PMID: 36919661 DOI: 10.1039/d3cp00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Accurate detection of toxic gases at low concentrations is often difficult because they are colorless, odorless, flammable and denser than air. Therefore, it is urgent to develop highly stable and sensitive toxic gas detectors. However, most gas sensors operate at high temperatures, making the detection of toxic gases more challenging. Two-dimensional materials with high specific surface area and abundant modulation methods of properties provide new inspirations for the development of new toxic gas sensing materials. Here, bismuthene, a single element two-dimensional material with high carrier mobility and excellent stability, was used as a substrate material to investigate the effects of anchoring and doping on its gas detection performance by density functional theory (DFT) calculations. It is revealed that the surface structure altered by single metal atoms (Ba, Be, Ca, K, Li, Mg, Na, and Sr) can promote the improvement of gas detection sensitivity. Buckled honeycomb bismuthene (bBi) with the Be atom anchored (A-Be-Bi) show superior sensitivity to H2S, while D-Ca-Bi, D-Li-Bi, D-Mg-Bi and D-Sr-Bi also have relatively high toxic gas detection sensitivity. We further discussed the recovery times of these modified bBis at various temperatures to determine the potential for applications. The ultra-fast recovery time of less than 0.5 seconds demonstrates the potential of these systems at room temperature and can be applied to the manufacture of toxic gas sensors used under practical sensing conditions.
Collapse
Affiliation(s)
- An Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Yanqiang Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Zhilong Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Junfei Cai
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Simin Ye
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China. .,Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong university, Shanghai, 200240, China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
13
|
Theoretical insight into electrocatalytic nitrogen fixation on transition-metal decorated melon-based carbon nitride. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Tursun M, Wu C. Single Transition Metal Atoms Anchored on Defective MoS 2 Monolayers for the Electrocatalytic Reduction of Nitric Oxide into Ammonia and Hydroxylamine. Inorg Chem 2022; 61:17448-17458. [DOI: 10.1021/acs.inorgchem.2c02247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mamutjan Tursun
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
- College of Chemistry and Environmental Science, Kashgar University, Kashgar844000, Xinjiang, China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an710054, China
| |
Collapse
|
15
|
Li X, Wang Z, Tian Y, Li X, Cai Q, Zhao J. Single-atom rhodium anchored on S-doped black phosphorene as a promising bifunctional electrocatalyst for overall water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Mahmood A, Akram T, Kiani M, Akram T, Tian X, Sun Y. Mechanism and Regioselectivity in Methylation of Nitronates [CH2NO2]−: Resonance vs Inductive Effects. NEW J CHEM 2022. [DOI: 10.1039/d2nj02947b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations were performed to investigate the mechanism, regioselectivity, and the resonance and inductive effects in methylation of nitronate reactions in the gas-phase and in solutions (water, DMF,...
Collapse
|