1
|
Xing H, Zhang K, Chang R, Wen Z, Xu Y. Integrating CoP/Co heterojunction into nitrogen-doped carbon polyhedrons as electrocatalysts to promote polysulfides conversion in lithium-sulfur batteries. J Colloid Interface Sci 2025; 677:181-193. [PMID: 39142159 DOI: 10.1016/j.jcis.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Lithium-sulfur (Li-S) batteries have garnered extensive research interest as one of the most promising energy storage devices due to their ultra-high theoretical energy density. However, the sluggish reaction kinetics, abominable shuttling effect and inferior cycling stability severely restrict its practical application. Herein, a multifunctional CoP/Co@NC/CNT heterostructure host material was elaborately designed and synthesized by integrating CoP/Co heterojunction, N-doped carbon hollow polyhedrons (NC) and carbon nanotubes (CNTs). Specifically, the CoP/Co heterojunction can reconfigure the local electronic structure, resulting in a synergistic effect that enhances adsorption capacity and catalytic activity compared to CoP and Co alone. Furthermore, the CNTs-grafted NC not only provides multi-dimensional pathways for rapid electron transport and ion diffusion, but also physically restricts the diffusion of polysulfides during charge-discharge processes. Owing to these advantages, the battery assembled with the CoP/Co@NC/CNT/S cathode yields an impressive discharge specific capacity of 1479.9 mAh g-1 at 0.1C, and excellent capacity retention of 793.7 mAh g-1 over 500 cycles at 2C (∼85.5 % of initial capacity). The rational integration of multifunctional heterostructures could provide an effective strategy for designing high-efficiency nanocomposite electrocatalysts to promote sulfur redox kinetics in Li-S batteries.
Collapse
Affiliation(s)
- Haiyang Xing
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Zhang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rui Chang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziqi Wen
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China
| | - Youlong Xu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China; Shaanxi Engineering Research Center of Advanced Energy Materials & Devices, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Song K, Yang D, Zhou C, Li Q, Zhang L, Gong J, Zhong W, Shen S, Chen S. CoPS/Co 4S 3 Heterojunction with Highly Exposed Active Sites and Dual-site Synergy for Effective Hydrogen Evolution Reactions. Chemistry 2024; 30:e202401038. [PMID: 38775655 DOI: 10.1002/chem.202401038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
Cobalt phosphosulphide (CoPS) has recently been recognized as a potentially effective electrocatalyst for the hydrogen evolution reaction (HER). However, there have been no research on the design of CoPS-based heterojunctions to boost their HER performance. Herein, CoPS/Co4S3 heterojunction was prepared by phosphating treatment based on defect-rich flower-like Co1-xS precursors. The high specific surface area of nanopetals, together with the heterojunction structure with inhomogeneous strain, exposes more active sites in the catalyst. The electronic structure of the catalyst is reconfigured as a result of the interfacial interactions, which promote the catalyst's ability to adsorb hydrogen and conduct electricity. The synergistic effect of the Co and S dual-site further enhance the catalytic activity. The catalyst has overpotentials of 61 and 70 mV to attain a current density of 10 mA cm-2 in acidic and alkaline media, respectively, which renders it competitive with previously reported analogous catalysts. This work proposes an effective technique for constructing transition metal phosphosulfide heterojunctions, as well as the development of an efficient HER electrocatalyst.
Collapse
Affiliation(s)
- Kai Song
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Dian Yang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Chenjing Zhou
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Qingao Li
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Lili Zhang
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Junjie Gong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Wenwu Zhong
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Shijie Shen
- Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Jiaojiang, 318000, Zhejiang, China
| | - Shichang Chen
- School of Materials Science ( Engineering, Zhejiang Sci-Tech University, 310018, Zhejiang, China
| |
Collapse
|
3
|
Zheng M, Zhao J, Wu W, Chen R, Chen S, Cheng N. Co/CoS 2 Heterojunction Embedded in N, S-Doped Hollow Nanocage for Enhanced Polysulfides Conversion in High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303192. [PMID: 37712177 DOI: 10.1002/smll.202303192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/26/2023] [Indexed: 09/16/2023]
Abstract
Modulating the electronic configuration of the substrate to achieve the optimal chemisorption toward polysulfides (LiPSs) for boosting polysulfide conversion is a promising way to the efficient Li-S batteries but filled with challenges. Herein, a Co/CoS2 heterostructure is elaborately built to tuning d-orbital electronic structure of CoS2 for a high-performance electrocatalyst. Theoretical simulations first evidence that Co metal as the electron donator can form a built-in electric field with CoS2 and downshift the d-band center, leading to the well-optimized adsorption strength for lithium polysulfides on CoS2 , thus contributing a favorable way for expediting the redox reaction kinetics of LiPSs. As verification of prediction, a Co/CoS2 heterostructure implanted in porous hollow N, S co-doped carbon nanocage (Co/CoS2 @NSC) is designed to realize the electronic configuration regulation and promote the electrochemical performance. Consequently, the batteries assembled with Co/CoS2 @NSC cathode display an outstanding specific capacity and an admirable cycling property as well as a salient property of 8.25 mAh cm-2 under 8.18 mg cm-2 . The DFT calculation also reveals the synergistic effect of N, S co-doping for enhancing polysulfide adsorption as well as the detriment of excessive sulfur doping.
Collapse
Affiliation(s)
- Ming Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Junzhe Zhao
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
4
|
Li J, Gao B, Shi Z, Chen J, Fu H, Liu Z. Graphene/Heterojunction Composite Prepared by Carbon Thermal Reduction as a Sulfur Host for Lithium-Sulfur Batteries. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4956. [PMID: 37512231 PMCID: PMC10383576 DOI: 10.3390/ma16144956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
An interlayer nanocomposite (CC@rGO) consisting of a graphene heterojunction with CoO and Co9S8 was prepared using a simple and low-cost hydrothermal calcination method, which was tested as a cathode sulfur carrier for lithium-sulfur batteries. The CC@rGO composite comprises a spherical heterostructure uniformly distributed between graphene sheet layers, preventing stacking the graphene sheet layer. After the introduction of cobalt heterojunction on a graphene substrate, the Co element content increases the reactive sites of the composite and improves its electrochemical properties to some extent. The composite exhibited good cycling performance with an initial discharge capacity of 847.51 mAh/g at 0.5 C and a capacity decay rate of 0.0448% after 500 cycles, which also kept 452.91 mAh/g at 1 C and in the rate test from 3 C back to 0.1 C maintained 993.27 mAh/g. This article provides insight into the design of cathode materials for lithium-sulfur batteries.
Collapse
Affiliation(s)
- Jiahao Li
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Bo Gao
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Zeyuan Shi
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Jiayang Chen
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Haiyang Fu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| | - Zhuang Liu
- Key Laboratory for Ecological Metallurgy of Multimetallic Mineral, Ministry of Education, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Xie F, Xu C, Song Y, Liang Q, Ji J, Wang S. 2D-2D heterostructure of ionic liquid-exfoliated MoS 2/MXene as lithium polysulfide barrier for Li-S batteries. J Colloid Interface Sci 2023; 636:528-536. [PMID: 36652828 DOI: 10.1016/j.jcis.2023.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023]
Abstract
Suppressing the dissolution and shuttling of lithium polysulfides (LiPSs) in electrolytes in lithium-sulfur batteries (LSBs) is the focus of researchers. Herein, functional liquid phase exfoliated MoS2 and MXene (IL-MoS2/MX) interlayer is proposed as the separator of LSBs. The unique alternating intercalation structure of the IL-MoS2/MX interlayer provides a channel for ion transport while achieving uniform Li+ deposition on the anode side. Moreover, IL-MoS2 achieves physical and chemical anchoring to LiPSs and lowers the energy barrier for battery reactions. As a result, the separator in the coin cell delivers an initial capacity of 764.4 mAh·g-1 at 1C and high retention of 58.7 % after 700 cycles, with a decay only 0.059 % per cycle. Simultaneously, the excellent stability is also verified under varying current densities. Beyond that, ionic conductivity and lithium-ion migration number are adopted to confirm unique ion transport channels and uniform deposition of lithium. X-ray photoelectron spectroscopy, S8 and Li2S decomposition and nucleation energy barrier analysis are performed to verify the adsorption and catalytic conversion mechanisms. The convenient preparation and excellent performance of IL-MoS2/MX provide a design strategy for functionalized interlayers for LSBs, and the possibility for commercialization.
Collapse
Affiliation(s)
- Fangwei Xie
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, PR China.
| | - Chunjie Xu
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Yaochen Song
- Yangtze Delta Region Institute (QuZhou), University of Electronic Science and Technology of China, Quzhou 313001, PR China
| | - Qi Liang
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jinjie Ji
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, PR China
| | - Sizhe Wang
- Yangtze Delta Region Institute (QuZhou), University of Electronic Science and Technology of China, Quzhou 313001, PR China; School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|