1
|
Lee HM, Jeong HW, Revadekar C, Lee SJ, Bae J, Im SH, Park BJ. Nondeterministic Wetting of Janus Microspheres at the Oil/Water Interface. J Phys Chem Lett 2024; 15:11815-11822. [PMID: 39561263 DOI: 10.1021/acs.jpclett.4c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
We investigate the nondeterministic wetting behaviors of Janus particles at the n-decane/water interface. Upon adsorption at the interface, only some particles reach their thermodynamically stable configuration, while many remain in random nonequilibrium states likely due to contact line pinning. Experimental data and Monte Carlo simulations show that particles in nonequilibrium states with lower three-phase contact angles exhibit reduced attractive forces due to a smaller radius of the three-phase contact line. We also find that vertical translation more easily leads to equilibrium than rotational motion. This work motivates further exploration into the effects of surface tension and surface roughness on identifying the pinning energy barrier, as well as the pinning behavior of biological materials.
Collapse
Affiliation(s)
- Hyang Mi Lee
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Hye Won Jeong
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Chetan Revadekar
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi-do 18323, Republic of Korea
| | - Jinhye Bae
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, La Jolla, California 92093, United States
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 Four Integrated Engineering Program), College of Engineering, Kyung Hee University, Yongin, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
2
|
Wang Y, Zhang Y, Liang L, Tu F, Li Z, Tang X, Dai L, Li L. Research Progress on Membrane Separation Technology for Oily Wastewater Treatment. TOXICS 2024; 12:794. [PMID: 39590977 PMCID: PMC11598286 DOI: 10.3390/toxics12110794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
This paper presents the research progress and future prospects of membrane separation technology for treating oily wastewater. It discusses various treatment methods tailored to different sources and characteristics of oily wastewater, summarizing the features of different membrane separation technologies and the latest advancements in their application. The paper concludes by emphasizing the need for future research to focus on developing environmentally friendly and efficient coupled membrane treatment technologies, optimizing membrane material design and enhancing the environmental benefits of oily wastewater treatment.
Collapse
Affiliation(s)
- Yichang Wang
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Yu Zhang
- Institute of Soil and Water Resources and Environment Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310012, China; (Y.Z.); (X.T.)
| | - Liang Liang
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Feng Tu
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Zhongjian Li
- Institute of Industrial Ecology and Environment, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310012, China;
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environment Science, College of Environment and Resource Sciences, Zhejiang University, Hangzhou 310012, China; (Y.Z.); (X.T.)
| | - Li Dai
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| | - Lingli Li
- State Grid Zhejiang Electric Power Co., Ltd. Construction Branch, Hangzhou 310008, China; (Y.W.)
| |
Collapse
|
3
|
Pi P, Ren Z, Yang Y, Chen W, Lin Y. A review of various dimensional superwetting materials for oil-water separation. NANOSCALE 2024; 16:17248-17275. [PMID: 39225194 DOI: 10.1039/d4nr01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In recent years, the application and fabrication technologies of superwetting materials in the field of oil-water separation have become a research hotspot, aiming to address challenges in marine oil spill response and oily wastewater treatment. Simultaneously, the fabrication technologies and related applications of superwetting materials have been increasingly diversified. This paper systematically reviews the sources and hazards of oily wastewater and oil-water emulsions, several traditional oil-water separation methods, and their limitations, thereby highlighting the advantages of superwetting materials. Additionally, this paper provides an overview of the fundamental theories of wetting and conducts a microanalysis of the penetration mechanism based on Laplace pressure at the gas-liquid-solid three-phase interface. Following this, the latest advances in superwetting oil-water separation materials are elucidated, focusing on five categories: (i) superhydrophobic-superoleophilic materials; (ii) superhydrophilic-underwater superoleophobic materials; (iii) superhydrophobic-superoleophobic materials; (iv) "special" superwetting materials; and (v) smart switchable superwetting materials. This paper innovatively discusses these materials from the perspectives of two-dimensional and three-dimensional materials, deeply studying the mechanisms of oil-water separation and using data to quantify the separation efficiency. Comparative discussions are conducted on the materials from various dimensions, including different substrates, innovations in existing technologies, and fabrication methods as discussed in various articles, followed by corresponding summaries. Finally, the existing shortcomings and challenges of current superwetting materials are summarized, and prospects are proposed. We firmly believe that developing low-cost, stable, environmentally friendly, and practical large-scale superwetting oil-water separation materials will have broad application prospects and potential in the future.
Collapse
Affiliation(s)
- Peng Pi
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Zhiying Ren
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Yu Yang
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Weiping Chen
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Youxi Lin
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| |
Collapse
|
4
|
Lee J, Han CH, Oh IH, Allu S, Kim HJ, Kim J, Kim WS, Park BJ. Fabrication and evaluation of stable amorphous polymer-drug composite particles via a nozzle-free ultrasonic nebulizer. Int J Pharm 2024; 657:124177. [PMID: 38697582 DOI: 10.1016/j.ijpharm.2024.124177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 04/09/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Chang Hun Han
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - In Hwan Oh
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Suryanarayana Allu
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| | - Hee Jin Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Jinsoo Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea
| | - Woo-Sik Kim
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| | - Bum Jun Park
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin 17104, South Korea.
| |
Collapse
|
5
|
da Mota AF, Sadafi MM, Mosallaei H. Asymmetric imaging through engineered Janus particle obscurants using a Monte Carlo approach for highly asymmetric scattering media. Sci Rep 2024; 14:3850. [PMID: 38360866 PMCID: PMC10869813 DOI: 10.1038/s41598-024-54035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024] Open
Abstract
The advancement of imaging systems has significantly ameliorated various technologies, including Intelligence Surveillance Reconnaissance Systems and Guidance Systems, by enhancing target detection, recognition, identification, positioning, and tracking capabilities. These systems can be countered by deploying obscurants like smoke, dust, or fog to hinder visibility and communication. However, these counter-systems affect the visibility of both sides of the cloud. In this sense, this manuscript introduces a new concept of a smoke cloud composed of engineered Janus particles to conceal the target image on one side while providing clear vision from the other. The proposed method exploits the unique scattering properties of Janus particles, which selectively interact with photons from different directions to open up the possibility of asymmetric imaging. This approach employs a model that combines a genetic algorithm with Discrete Dipole Approximation to optimize the Janus particles' geometrical parameters for the desired scattering properties. Moreover, we propose a Monte Carlo-based approach to calculate the image formed as photons pass through the cloud, considering highly asymmetric particles, such as Janus particles. The effectiveness of the cloud in disguising a target is evaluated by calculating the Probability of Detection (PD) and the Probability of Identification (PID) based on the constructed image. The optimized Janus particles can produce a cloud where it is possible to identify a target more than 50% of the time from one side (PID > 50%) while the target is not detected more than 50% of the time from the other side (PD < 50%). The results demonstrate that the Janus particle-engineered smoke enables asymmetric imaging with simultaneous concealment from one side and clear visualization from the other. This research opens intriguing possibilities for modern obscurant design and imaging systems through highly asymmetric and inhomogeneous particles besides target detection and identification capabilities in challenging environments.
Collapse
Affiliation(s)
- Achiles F da Mota
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
- Department of Electrical Engineering, University of Brasília (UnB), Brasília, 70910-900, Brazil
| | - Mohammad Mojtaba Sadafi
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Hossein Mosallaei
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Hu H, Wang L, Dou J, Shang Y, Liu X, Shen J, Yuan J. Nitric Oxide-Releasing Porous Coating with Antibacterial Activity and Blood Compatibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1286-1294. [PMID: 38171006 DOI: 10.1021/acs.langmuir.3c02797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Nitric oxide (NO)-releasing coating is promising to enhance the biocompatibility of medical devices. In this study, polyurethane (PU) and S-nitrosated keratin (KSNO) were dissolved with dimethyl sulfoxide (DMSO) and tetrahydrofuran (THF) to prepare a coating solution. This solution is facile to form a porous coating on various substrates based on solvent-evaporation-induced phase separation (SEIPS). The coating could continuously release NO up to 200 h in the presence of ascorbic acid (Asc). In addition, the coating could accelerate endothelialization by promoting the viability of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, the coating had good antibacterial activity and blood compatibility. Taken together, this universal coating provides wider potential applications in the field of cardiovascular implants.
Collapse
Affiliation(s)
- Haiping Hu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jie Dou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Xu Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
7
|
Esteki B, Masoomi M, Moosazadeh M, Yoo C. Data-Driven Prediction of Janus/Core-Shell Morphology in Polymer Particles: A Machine-Learning Approach. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4943-4958. [PMID: 36999232 DOI: 10.1021/acs.langmuir.2c03355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The majority of research on Janus particles prepared by solvent evaporation-induced phase separation technique uses models based on interfacial tension or free energy to predict Janus/core-shell morphology. Data-driven predictions, in contrast, utilize multiple samples to identify patterns and outliers. Using machine-learning algorithms and explainable artificial intelligence (XAI) analysis, we developed a model based on a 200-instance data set to predict particle morphology. As model features, simplified molecular input line entry system syntax identifies explanatory variables, including cohesive energy density, molar volume, the Flory-Huggins interaction parameter of polymers, and the solvent solubility parameter. Our most accurate ensemble classifiers predict morphology with an accuracy of 90%. In addition, we employ innovative XAI tools to interpret system behavior, suggesting phase-separated morphology to be most affected by solvent solubility, polymer cohesive energy difference, and blend composition. While polymers with cohesive energy densities above a certain threshold favor the core-shell structure, systems with weak intermolecular interactions favor the Janus structure. The correlation between molar volume and morphology suggests that increasing the size of polymer repeating units favors Janus particles. Additionally, the Janus structure is preferred when the Flory-Huggins interaction parameter exceeds 0.4. XAI analysis introduces feature values that generate the thermodynamically low driving force of phase separation, resulting in kinetically stable morphologies as opposed to thermodynamically stable ones. The Shapley plots of this study also reveal novel methods for creating Janus or core-shell particles based on solvent evaporation-induced phase separation by selecting feature values that strongly favor a given morphology.
Collapse
Affiliation(s)
- Bahareh Esteki
- Department of Chemical Engineering, Polymer Group, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahmood Masoomi
- Department of Chemical Engineering, Polymer Group, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mohammad Moosazadeh
- Integrated Engineering Major, Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
| | - ChangKyoo Yoo
- Integrated Engineering Major, Department of Environmental Science and Engineering, Kyung Hee University, Seocheon-dong 1, Giheung-gu, Yongin-Si, Gyeonggi-Do 446-701, South Korea
| |
Collapse
|