1
|
Jovanović J, Ćirković J, Radojković A, Tasić N, Mutavdžić D, Branković G, Branković Z. Enhanced stability of encapsulated lemongrass essential oil in chitosan-gelatin and pectin-gelatin biopolymer matrices containing ZnO nanoparticles. Int J Biol Macromol 2024; 275:133335. [PMID: 38955548 DOI: 10.1016/j.ijbiomac.2024.133335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The use of essential oils is widespread in various fields such as pharmacy, pest control, and active packaging. However, their instability and short-term effects require methods to enhance their durability and effectiveness. Encapsulation in biopolymer matrices appears to be a promising approach due to the environmental safety and cost-effectiveness of such formulations. In this study, different oil-in-water emulsions were prepared by mixing chitosan-gelatin (C-G) or pectin-gelatin (P-G) solutions with lemongrass essential oil (LG). ZnO NPs were used as an additional active component. Encapsulation in biopolymer matrices resulted in stable emulsions with a significantly slower release of LG, and ZnO NPs further suppressed LG release, particularly in the P-G emulsion. They also contributed to the stability of the emulsions and a decrease in the average droplet size of LG. Furthermore, the presence of LG and ZnO NPs improved the smoothness of the films prepared from the emulsions and dispersions using the casting technique. SEM/EDS analysis confirmed the homogeneous distribution of ZnO NPs in both C-G and P-G films. By adjusting the type and content of the biopolymers and NPs, such emulsions could be effectively utilized in various applications where controlled release of active components is required.
Collapse
Affiliation(s)
- Jelena Jovanović
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia.
| | - Jovana Ćirković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Aleksandar Radojković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Nikola Tasić
- National Institute of Chemistry, Department of Analytical Chemistry, Hajdrihova 19, p.p. 660 SI-1001 Ljubljana, Slovenia
| | - Dragosav Mutavdžić
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Goran Branković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Zorica Branković
- University of Belgrade, Institute for Multidisciplinary Research, Department of Materials Science, Kneza Višeslava 1, 11030 Belgrade, Serbia; University of Belgrade, Institute for Multidisciplinary Research, Center of Excellence for Green Technologies, Kneza Višeslava 1, 11030 Belgrade, Serbia
| |
Collapse
|
2
|
Sharma G, George Joy J, Sharma AR, Kim JC. Accelerated full-thickness skin wound tissue regeneration by self-crosslinked chitosan hydrogel films reinforced by oxidized CNC-AgNPs stabilized Pickering emulsion for quercetin delivery. J Nanobiotechnology 2024; 22:323. [PMID: 38849931 PMCID: PMC11162036 DOI: 10.1186/s12951-024-02596-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The non-toxic self-crosslinked hydrogel films designed from biocompatible materials allow for controlled drug release and have gathered remarkable attention from healthcare professionals as wound dressing materials. Thus, in the current study the chitosan (CS) film is infused with oil-in-water Pickering emulsion (PE) loaded with bioactive compound quercetin (Qu) and stabilized by dialdehyde cellulose nanocrystal-silver nanoparticles (DCNC-AgNPs). The DCNC-AgNPs play a dual role in stabilizing PE and are involved in the self-crosslinking with CS films. Also, this film could combine the advantage of the controlled release and synergistic wound-healing effect of Qu and AgNPs. RESULTS The DCNC-AgNPs were synthesized using sodium periodate oxidation of CNC. The DCNC-AgNPs were used to stabilize oil-in-water PE loaded with Qu in its oil phase by high speed homogenization. Stable PEs were prepared by 20% v/v oil: water ratio with maximum encapsulation of Qu in the oil phase. The Qu-loaded PE was then added to CS solution (50% v/v) to prepare self-crosslinked films (CS-PE-Qu). After grafting CS films with PE, the surface and cross-sectional SEM images show an inter-penetrated network within the matrix between DCNC and CS due to the formation of a Schiff base bond between the reactive aldehyde groups of DCNC-AgNPs and amino groups of CS. Further, the addition of glycerol influenced the extensibility, swelling ratio, and drug release of the films. The fabricated CS-PE-Qu films were analyzed for their wound healing and tissue regeneration potential using cell scratch assay and full-thickness excisional skin wound model in mice. The as-fabricated CS-PE-Qu films showed great biocompatibility, increased HaCat cell migration, and promoted collagen synthesis in HDFa cells. In addition, the CS-PE-Qu films exhibited non-hemolysis and improved wound closure rate in mice compared to CS, CS-Qu, and CS-blank PE. The H&E staining of the wounded skin tissue indicated the wounded tissue regeneration in CS-PE-Qu films treated mice. CONCLUSION Results obtained here confirm the wound healing benefits of CS-PE-Qu films and project them as promising biocompatible material and well suited for full-thickness wound healing in clinical applications.
Collapse
Affiliation(s)
- Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Jomon George Joy
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| |
Collapse
|
3
|
Meng X, Qiu D. Surface morphology regulation of colloidal Nanoparticles: A convenient Kinetically-Controlled seeded growth strategy. J Colloid Interface Sci 2023; 633:284-290. [PMID: 36459933 DOI: 10.1016/j.jcis.2022.11.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/29/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022]
Abstract
HYPOTHESIS Except for chemical composition, surface morphology may endue colloidal nanoparticles with special interfacial behaviors, which is highly desired in certain scenarios, for example, ultra-stable Pickering emulsion for pharmaceutical applications where only limited chemicals are allowed. Herein, silica colloidal nanoparticle was chosen as a demo to illustrate a kinetically-controlled seeded growth strategy for the surface morphology regulation of colloidal nanoparticles. EXPERIMENTS Surface chemical heterogeneity was primarily introduced to the silica seed nanoparticles by a seeded growth process in the presence of mixed silicate moieties with thermodynamical incompatibility. Then a further kinetically-controlled seeded growth step was performed to regulate the surface morphology of silica nanoparticles by promoting the selective condensation of tetraethoxysilane on the hydrophilic microdomains. FINDINGS Upon reducing the growing rate, tetraethoxysilane hydrolysates tend to condensate on silica microdomains, resulting in the formation of raspberry-like nanoparticles. The generality of the kinetically-controlled seeded growth strategy was validated by its success on differently-sized silica seeds modified with a range of silane coupling agents. This established strategy is facile and effective for massive production of raspberry-like silica colloidal nanoparticles with precisely-designed surface morphology and size, offering an ideal platform for the investigation on the exclusive contribution of morphology to the interfacial behaviors of nanoparticles.
Collapse
Affiliation(s)
- Xiaohui Meng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, R. P. China; University of Chinese Academy of Sciences, Beijing, P. R. China.
| |
Collapse
|
4
|
Semproli R, Simona Robescu M, Sangiorgio S, Pargoletti E, Bavaro T, Rabuffetti M, Cappelletti G, Speranza G, Ubiali D. From Lactose to Alkyl Galactoside Fatty Acid Esters as Non-Ionic Biosurfactants: A Two-Step Enzymatic Approach to Cheese Whey Valorization. Chempluschem 2023; 88:e202200331. [PMID: 36592040 DOI: 10.1002/cplu.202200331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/08/2022] [Indexed: 12/14/2022]
Abstract
A library of alkyl galactosides was synthesized to provide the "polar head" of sugar fatty acid esters to be tested as non-ionic surfactants. The enzymatic transglycosylation of lactose resulted in alkyl β-D-galactopyranosides, whereas the Fischer glycosylation of galactose afforded isomeric mixtures of α- and β-galactopyranosides and α- and β-galactofuranosides. n-Butyl galactosides from either routes were enzymatically esterified with palmitic acid, used as the fatty acid "tail" of the surfactant, giving the corresponding n-butyl 6-O-palmitoyl-galactosides. Measurements of interfacial tension and emulsifying properties of n-butyl 6-O-palmitoyl-galactosides revealed that the esters of galactopyranosides are superior to those of galactofuranosides, and that the enantiopure n-butyl 6-O-palmitoyl-β-D-galactoside, prepared by the fully enzymatic route, leads to the most stable emulsion. These results pave the way to the use of lactose-rich cheese whey as raw material for the obtainment of bio-based surfactants.
Collapse
Affiliation(s)
- Riccardo Semproli
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Marina Simona Robescu
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Sara Sangiorgio
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Eleonora Pargoletti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| | - Marco Rabuffetti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Giuseppe Cappelletti
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Giovanna Speranza
- Department of Chemistry, University of Milano, Via Golgi 19, Milano, I-20133, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, Pavia, I-27100, Italy
| |
Collapse
|
5
|
He J, Jia H, Wang Q, Xu Y, Zhang L, Jia H, Song L, Wang Y, Xie Q. Investigation on pH and redox-trigged emulsions stabilized by ferrocenyl surfactants in combination with Al2O3 nanoparticles and their application for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|