1
|
Wang X, Wang B, Zhu H, Cao B, Liu T. A Nanoconfinement Strategy to Construct Co@CNTs for Lightweight and Ultra-Broadband Microwave Absorption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405351. [PMID: 39162121 DOI: 10.1002/smll.202405351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/01/2024] [Indexed: 08/21/2024]
Abstract
The construction of stable and efficient nanocomposites with low addition and light weight has always been the goal pursued in the field of electromagnetic wave (EMW) absorption. In this study, the Co@CNTs nanocomposites with Co nanoparticles (13 nm) nanoconfined in the carbon nanotube (CNT) are successfully synthesized by a simple hydrothermal method and phenolic assisted pyrolysis method. The degree of graphitization of CNTs and the microstructure of Co nanoparticles can be effectively regulated by controlling the calcination temperature. The sample calcined at 700 °C can obtain excellent absorption performance at a low filling capacity of 10 wt.%: the minimum reflection loss (RL) is -41.2 dB and the effective absorption bandwidth (EAB) reaches a maximum width of 14.2 GHz. When the sample thickness is only 2.2 mm, the EAB of <-20 dB reaches 8.3 GHz, which is the maximum EAB of most current Co-based absorbers. In particular, the polarization and ferromagnetic coupling behaviors are elucidated in depth with the aid of electromagnetic field simulations using the High-Frequency Structure Simulator (HFSS). This work provides a new nanoconfinement strategy for constructing the Co@CNTs nanocomposites as lightweight and ultra-broadband absorbing materials for EMW protection and EMW pollution control.
Collapse
Affiliation(s)
- Xiangyu Wang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China
| | - Baolei Wang
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, P. R. China
| | - Hongsong Zhu
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China
| | - Boyuan Cao
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China
| | - Tong Liu
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
He L, Xu H, Cui Y, Qi J, Wang X, Jin Q. Co-Doped Porous Carbon/Carbon Nanotube Heterostructures Derived from ZIF-L@ZIF-67 for Efficient Microwave Absorption. Molecules 2024; 29:2426. [PMID: 38893301 PMCID: PMC11173442 DOI: 10.3390/molecules29112426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/13/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Carbon-based magnetic metal composites derived from metal-organic frameworks (MOFs) are promising materials for the preparation of broadband microwave absorbers. In this work, the leaf-like co-doped porous carbon/carbon nanotube heterostructure was obtained using ZIF-L@ZIF-67 as precursor. The number of carbon nanotubes can be controlled by varying the amount of ZIF-67, thus regulating the dielectric constant of the sample. An optimum reflection loss of -42.2 dB is attained when ZIF-67 is added at 2 mmol. An effective absorption bandwidth (EAB) of 4.8 GHz is achieved with a thickness of 2.2 mm and a filler weight of 12%. The excellent microwave absorption (MA) ability is generated from the mesopore structure, uniform heterogeneous interfaces, and high conduction loss. The work offers useful guidelines to devise and prepare such nanostructured materials for MA materials.
Collapse
Affiliation(s)
- Liming He
- The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China; (L.H.); (Y.C.)
| | - Hongda Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (H.X.); (X.W.)
| | - Yang Cui
- The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China; (L.H.); (Y.C.)
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaolong Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, China; (H.X.); (X.W.)
| | - Quan Jin
- The Key Laboratory of Automobile Materials (Ministry of Education), School of Materials Science and Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China; (L.H.); (Y.C.)
| |
Collapse
|
3
|
Sharma KP, Shin M, Awasthi GP, Cho S, Yu C. One-step hydrothermal synthesis of CuS/MoS 2 composite for use as an electrochemical non-enzymatic glucose sensor. Heliyon 2024; 10:e23721. [PMID: 38312675 PMCID: PMC10835264 DOI: 10.1016/j.heliyon.2023.e23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 02/06/2024] Open
Abstract
Early diagnosis may be crucial for the prevention of chronic diabetes mellitus. For that herein, we prepared a CuS/MoS2 composite for a non-enzymatic glucose sensor through a one-step hydrothermal method owing to the synergetic effect of CuS/MoS2. The surface morphology of CuS/MoS2 was studied by Field Emission Scanning Electron Microscopy (FESEM) and Cs-corrected Scanning Transmission Electron Microscopy (Cs-STEM). The crystallinity and surface composition of CuS/MoS2 were analyzed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) respectively. The working electrode was prepared from CuS/MoS2 electrocatalyst, and for that dispersed solution of electrocatalyst was used to fabricate the material-loaded glassy carbon electrode (GC). CuS/MoS2 composite shows the viability of electrocatalyst to oxidize glucose in an alkaline solution with sensitivity and detection limit of 252.71 μA mM-1 cm-2 and 1.52 μM respectively. The proposed glucose sensor showed reasonable stability and potential selectivity during electrochemical analysis. Accordingly, the CuS/MoS2 composite has potential as a viable material for glucose sensing in diluted human serum.
Collapse
Affiliation(s)
- Krishna Prasad Sharma
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Miyeon Shin
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Ganesh Prasad Awasthi
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| | - Soonhwan Cho
- ENPLUS Co., LTD, 167 Jayumuyeok-gil, Baeksan-myeon, Gimje-si, 54352, Republic of Korea
| | - Changho Yu
- Department of Energy Storage/Conversion Engineering (BK21 FOUR), Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
- Division of Convergence Technology Engineering, Jeonbuk National University, Jeonju, Jeollabuk-do, 54896, Republic of Korea
| |
Collapse
|
4
|
Xiao L, Wang Y, Kimura H, Sun H, Sun X, Hou C, Wang B, Zhang Y, Yang X, Yu R, Ni C, Xie X, Du W. Synergetic dielectric and magnetic losses of melamine sponge-loaded puffed-rice biomass carbon and Ni 3ZnC 0.7 for optimal effective microwave absorption. J Colloid Interface Sci 2024; 653:570-580. [PMID: 37738930 DOI: 10.1016/j.jcis.2023.09.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/24/2023]
Abstract
Multi-dimensional design and the combination of multiple phases can effectively enhance the dielectric loss properties and multiple reflection effects of absorbers. Herein, a novel multi-dimensional microporous nanostructured composite, melamine sponge (MS) loaded puffed-rice biomass carbon (C) together with bimetallic carbide material Ni3ZnC0.7 (Ni3ZnC0.7-MS/C) was synthesized by simple vacuum filtration and hydrothermal calcination. The result indicates that small Ni3ZnC0.7 particles with little Ni doping uniformly decorated on the surfaces of the three-dimensional (3D) melamine sponge and puffed rice carbons. The Ni3ZnC0.7-MS/C composite mixed with paraffin (weight ratio of 1:2) exhibited the best electromagnetic wave (EMW) absorption performance, and the minimum reflection loss (RLmin) value of the Ni3ZnC0.7-MS/C composite reaches -107.7 dB with a matching thickness of 2.78 mm and the maximum effective absorption bandwidth for RL below -10 dB (EABmax) is adjusted to 9.2 GHz at a matching thickness of 4.0 mm. The dipole polarization effect of the N doping and the different interfaces provided by the 3D structure of the MS carbon enhance the conduction loss and interface polarization, while the positive effects of eddy current and resonance caused by Ni3ZnC0.7 effectively improve the microwave absorption performances. This melamine sponge-loaded bimetallic carbon composite exhibited a magnetic/dielectric loss combination, resulting in a high-performance absorber with lightweight, cost-effective and efficient properties.
Collapse
Affiliation(s)
- Lirong Xiao
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Yukun Wang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Hideo Kimura
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Haosen Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Xueqin Sun
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Chuanxin Hou
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Baolei Wang
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yuping Zhang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Xiaoyang Yang
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China
| | - Ronghai Yu
- Key Laboratory of Aerospace Materials and Performance (Ministry of Education) School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, China
| | - Cui Ni
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| | - XiuBo Xie
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| | - Wei Du
- School of Environmental and Material Engineering, Yantai University, No. 30 Qingquan Road, Yantai 264005, China.
| |
Collapse
|
5
|
Wang X, Xing X, Zhu H, Li J, Liu T. State of the art and prospects of Fe 3O 4/carbon microwave absorbing composites from the dimension and structure perspective. Adv Colloid Interface Sci 2023; 318:102960. [PMID: 37478512 DOI: 10.1016/j.cis.2023.102960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
At present, to solve the threat of electromagnetic wave (EMW) radiation pollution to human health, intelligent control and information security, tremendous efforts have been made to manufacture EMW absorbing materials. For ideal microwave absorption materials (MAMs), it is generally necessary not only to pursue strong microwave absorption (MA) over wide effective absorption bandwidth (EAB), but also to take into account the requirements of light weight, thin matching thickness and chemical stability characteristics. It has been found that magnetite (Fe3O4) is the most promising MAM to absorb and dissipate EMW among various absorbers, because of its good mechanical and chemical stability, controllable morphology, high Curie temperature, easy preparation, economy and excellent magnetic properties. However, the application performance of Fe3O4 absorber with single composition is limited by its easy agglomeration, eddy current, high density, and impedance mismatch. In addition, achieving efficient MA metrics with low absorber loading remains a huge challenge. To overcome these limitations, conjugation with dielectric carbon-based materials and special structural designs have been extensively explored as viable solutions to optimize the microwave absorption performance (MAP) of Fe3O4. This paper reviews the recent research progress of Fe3O4/carbon MAMs, and then the influence of dimensions and structures regulations on the MAPs are introduced in detail. Finally, the current existing problems and future development direction of Fe3O4/carbon composites in the field of MA are also presented.
Collapse
Affiliation(s)
- Xiangyu Wang
- Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, PR China
| | - Xiaofei Xing
- Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, PR China
| | - Hongsong Zhu
- Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, PR China
| | - Jing Li
- Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, PR China
| | - Tong Liu
- Key Laboratory of Aerospace Materials and Performance, Ministry of Education, School of Materials Science and Engineering, Beihang University, No.37 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
6
|
Aghaei F, Tangestaninejad S, Bahadori M, Moghadam M, Mirkhani V, Mohammadpoor Baltork I, Khalaji M, Asadi V. Green synthesize of nano-MOF-ethylcellulose composite fibers for efficient adsorption of Congo red from water. J Colloid Interface Sci 2023; 648:78-89. [PMID: 37295372 DOI: 10.1016/j.jcis.2023.05.170] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/07/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Two novel MOF- ethyl cellulose (EC)- based nanocomposites have been designed and synthesized in water by electrospinning and applied for adsorption of congo red (CR) in water. Nano- Zeolitic Imidazolate Framework-67 (ZIF-67), and Materials of Institute Lavoisier (MIL-88A) were synthesized in aqueous solutions by a green method. To enhance the dye adsorption capacity and stability of MOFs, they have been incorporated into EC nanofiber to prepare composite adsorbents. The performance of both composites in the absorption of CR, a common pollutant in some industrial wastewaters, has then been investigated. Various parameters including initial dye concentration, the dosage of the adsorbent, pH, temperature and contact time were optimized. The results indicated 99.8 and 90.9% adsorption of CR by EC/ZIF-67 and EC/MIL-88A, respectively at pH = 7 and temperature at 25 °C after 50 min. Furthermore, the synthesized composites were separated conveniently and successfully reused five times without significant loss of their adsorption activity. For both composites, the adsorption behavior can be explained by pseudo-second-order kinetics, Intraparticular diffiusion and Elovich models demonstrated that the experimental data well matched to the pseudo-second-order kinetics. Intraparticular diffiusion model showed that the adsorption of CR on EC/ZIF-67 and EC/MIL-88a took place in one and two steps, respectively. Freundlich isotherm models and thermodynamic analysis indicated exothermic and spontaneous adsorption.
Collapse
Affiliation(s)
- Forough Aghaei
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Shahram Tangestaninejad
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Mehrnaz Bahadori
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Majid Moghadam
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran.
| | - Valiollah Mirkhani
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran.
| | | | - Mahla Khalaji
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| | - Vahideh Asadi
- Department of Chemistry, Catalysis Division, University of Isfahan, Isfahan 81746-73441, Iran
| |
Collapse
|