1
|
Chen J, Wang L, Gola K, Zhang X, Guo Y, Sun J, Jia P, Zhou J. Vacancy engineering in tungsten oxide nanofluidic membranes for high-efficiency light-driven ion transport. J Colloid Interface Sci 2024; 683:241-249. [PMID: 39673937 DOI: 10.1016/j.jcis.2024.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Bioinspired light-driven ion transport has shown great potential in solar energy harvesting. To achieve efficiencies comparable to biological counterparts, effective coregulation of permselectivity and photoresponsivity is crucial. Herein, vacancy engineering has been proven to be a powerful strategy for considerably increasing the efficiency of light-driven ion transport in tungsten oxide (WO3-x) nanofluidic membranes by enhancing the negative surface charges and narrowing bandgaps. The enhancement in light-driven ion transport can be attributed to the efficient redistribution of surface charges due to the effective separation of photogenerated carriers. At an optimized vacancy concentration, WO2.66 membrane (WO2.66M) delivers an ionic photocurrent of 0.8 μA cm-2 in a 10-4 M KCl electrolyte, which is four times higher than that generated by the original WO2.85 membrane (WO2.85M). Following this strategy, uphill ion transport and photoenhanced osmotic energy conversion are successfully achieved in the WO3-x nanofluidic membrane system. This study shows that atomic vacancy engineering is an efficient approach to increase the light-driven ion transport dynamics of nanofluidics, providing an efficient strategy to enhance light-driven ion transport for potential applications in power harvesting and ion separation.
Collapse
Affiliation(s)
- Jiansheng Chen
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Lina Wang
- Testing and Analysis Center, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Komal Gola
- Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, 41296 Göteborg, Sweden
| | - Xinyi Zhang
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Yue Guo
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China
| | - Jinhua Sun
- Materials and Manufacture, Department of Industrial and Materials Science, Chalmers University of Technology, 41296 Göteborg, Sweden.
| | - Pan Jia
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| | - Jinming Zhou
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, PR China.
| |
Collapse
|
2
|
Guo X, Li Y, Xu Z, Liu D, Kong A, Liu R. Interface Electron Transfer Direction-Tuned Urea Electrooxidation Over Multi-Interface Nickel Sulfide Heterojunctions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408908. [PMID: 39632693 DOI: 10.1002/smll.202408908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Hydrogen can be produced by electrolyzing urea aqueous solution under smaller overpotentials, owing to the lower thermodynamic potential of urea oxidation reaction (UOR) at anode than oxygen evolution reaction (OER). The efficient and selective electrocatalysts for UOR are crucial to achieve this. Herein, two NiS-based NiS/Ni3S2 and NiS/NiS2 heterojunctions with Ni cores embedding in nitrogen-doped carbon nanotubes (NiS/Ni3S2- and NiS/NiS2-Ni@NCNT) are demonstrated as efficient UOR electrocatalysts. The electrocatalytic UOR performance over heterojunctions is efficiently tuned by altering the electron transfer direction on their interfaces. NiS/Ni3S2-Ni@NCNT with interface electrons transferring from Ni3S2 to NiS, delivers a 10 mA cm-2 UOR current density in 1.0 m KOH with 0.5 m urea at 1.37 V, superior to NiS/NiS2-Ni@NCNT with the electron transfer direction from NiS to NiS2. Experimental and theoretical calculation results reveal that NiS/Ni3S2 Mott-Schottky heterojunctions facilitate the rapid in situ formation of NiOOH active species by removing electrons of Ni3S2, and also accelerate the adsorption and conversion of urea molecules and key intermediates of *CON2 at its interfaces. This work demonstrates an interface electron transfer direction tuning strategy on heterojunctions for harvesting high-performance UOR electrocatalysts.
Collapse
Affiliation(s)
- Xingyu Guo
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yu Li
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhengrong Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Deng Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Aiguo Kong
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Rui Liu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| |
Collapse
|
3
|
Jiang Y, An X, Zhang Y, Wang F, Abdukayum A, Kong Q, Gao S, Hu G. Se-Doped CoS 2@MoS 2 Heterostructures on Multiwalled Carbon Nanotubes as Efficient Bifunctional Electrocatalysts for Alkaline Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407049. [PMID: 39558718 DOI: 10.1002/smll.202407049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/26/2024] [Indexed: 11/20/2024]
Abstract
The use of efficient and affordable non-precious metal catalysts for hydrogen and oxygen evolution reactions is vital for replacing and widely implementing new energy sources. Nevertheless, improving the catalytic performance of these non-precious-metal bifunctional electrocatalysts continues to be a major challenge. In this article, an optimized Se-incorporated bulk CoS2@MoS2 heterostructure grown on the surface of carbon nanotubes is reported. The resulting Se-CoS2@MoS2/CNTs exhibit robust bifunctional electrocatalytic performance, with low overpotentials of 85 and 240 mV @ 10 mA·cm-2 for HER and OER, respectively. The materials exhibit superior long-term stability of over 145 h, surpassing most electrocatalysts of similar type. This enhanced performance is attributed to the synergistic effect at the interface between the MoS2 and CoS2 phases, abundant active sites, and high active surface area, which collectively improves the electron-transfer efficiency during the reaction process. Furthermore, the incorporation of the amorphous state of Se into the heterostructure yields a change in the crystallinity of the heterostructure in the electronic structure, which optimizes the adsorption and activation energy barriers of the catalytic intermediate. This study thus presents a promising approach to regulating anion doping in bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Yuwei Jiang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Xuguang An
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Yu Zhang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Feng Wang
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Abdukader Abdukayum
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi, 844000, China
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu, 610106, China
| | - Sanshuang Gao
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650504, China
| |
Collapse
|
4
|
Yang Z, Chen H, Bei S, Bao K, Zhang C, Xiang M, Yu C, Dong S, Qin H. Ultralow RuO 2 Doped NiS 2 Heterojunction as a Multifunctional Electrocatalyst for Hydrogen Evolution linking to Biomass Organics Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310286. [PMID: 38164824 DOI: 10.1002/smll.202310286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Hydrogen energy and biomass energy are green and sustainable forms that can solve the energy crisis all over the world. Electrocatalytic water splitting is a marvelous way to produce hydrogen and biomass platform molecules can be added into the electrolyte to reduce the overpotential and meanwhile are converted into some useful organics, but the key point is the design of electrocatalyst. Herein, ultralow noble metal Ru is doped into NiS2 to form RuO2@NiS2 heterojunction. Amongst them, the 0.06 RuO2@NiS2 has low overpotentials of 363 mV for OER and 71 mV for HER in 1 m KOH, which are superior to the RuO2 and Pt/C. Besides, the 0.06 RuO2@NiS2 shows a low overpotential of 173 mV in 1 m KOH+0.1 m glycerol, and the glycerol is oxidized to glyceraldehyde and formic acid via the high Faraday efficiency GlyOR process, and the splitting voltage is only 1.17 V. In addition, the 0.06 RuO2@NiS2 has a low overpotential of 206 mV in 1 m KOH+0.1 m glucose, and the glucose is converted to glucaric acid, lactic acid, and formic acid. This work has a "one stone three birds" effect for the production of hydrogen, low splitting voltage, and high-value-added biomass chemicals.
Collapse
Affiliation(s)
- Zhou Yang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Hanbing Chen
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Shaoyi Bei
- Department of Automotive and Traffic Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Keyan Bao
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chunyong Zhang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Meng Xiang
- Department of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Chengbin Yu
- Research Institute of Advanced Materials (RIAM), Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Shuang Dong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, 213032, China
| | - Hengfei Qin
- Department of Resource and Environment, Jiangsu University of Technology & Key Laboratory of Precious Metal Deep Processing Technology and Application of Jiangsu Province, Changzhou, 213001, China
| |
Collapse
|
5
|
Zeng Y, Xiang S, Lu S, Qi X. Structural Design of Nickel Hydroxide for Efficient Urea Electrooxidation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2617. [PMID: 38893881 PMCID: PMC11173756 DOI: 10.3390/ma17112617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
Urea stands as a ubiquitous environmental contaminant. However, not only does urea oxidation reaction technology facilitate energy conversion, but it also significantly contributes to treating wastewater rich in urea. Furthermore, urea electrolysis has a significantly lower theoretical potential (0.37 V) compared to water electrolysis (1.23 V). As an electrochemical reaction, the catalytic efficacy of urea oxidation is largely contingent upon the catalyst employed. Among the plethora of urea oxidation electrocatalysts, nickel-based compounds emerge as the preeminent transition metal due to their cost-effectiveness and heightened activity in urea oxidation. Ni(OH)2 is endowed with manifold advantages, including structural versatility, facile synthesis, and stability in alkaline environments. This review delineates the recent advancements in Ni(OH)2 catalysts for electrocatalytic urea oxidation reaction, encapsulating pivotal research findings in morphology, dopant incorporation, defect engineering, and heterogeneous architectures. Additionally, we have proposed personal insights into the challenges encountered in the research on nickel hydroxide for urea oxidation, aiming to promote efficient urea conversion and facilitate its practical applications.
Collapse
Affiliation(s)
- Yi Zeng
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shouqin Xiang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xueqiang Qi
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
6
|
Yu J, Li Z, Wang C, Xu X, Liu T, Chen D, Shao Z, Ni M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J Colloid Interface Sci 2024; 661:629-661. [PMID: 38310771 DOI: 10.1016/j.jcis.2024.01.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
When the anodic oxygen evolution reaction (OER) of water splitting is replaced by the urea oxidation reaction (UOR), the electrolyzer can fulfill hydrogen generation in an energy-economic manner for urea electrolysis as well as sewage purification. However, owing to the sluggish kinetics from a six-electron process for UOR, it is in great demand to design and fabricate high-performance and affordable electrocatalysts. Over the past years, numerous non-precious materials (especially nickel-involved samples) have offered huge potential as catalysts for urea electrolysis under alkaline conditions, even in comparison with frequently used noble-metal ones. In this review, recent efforts and progress in these high-efficiency noble-metal-free electrocatalysts are comprehensively summarized. The fundamentals and principles of UOR are first described, followed by highlighting UOR mechanism progress, and then some discussion about density functional theory (DFT) calculations and operando investigations is given to disclose the real reaction mechanism. Afterward, aiming to improve or optimize UOR electrocatalytic properties, various noble-metal-free catalytic materials are introduced in detail and classified into different classes, highlighting the underlying activity-structure relationships. Furthermore, new design trends are also discussed, including targetedly designing nanostructured materials, manipulating anodic products, combining theory and in situ experiments, and constructing bifunctional catalysts. Ultimately, we point out the outlook and explore the possible future opportunities by analyzing the remaining challenges in this booming field.
Collapse
Affiliation(s)
- Jie Yu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Chen Wang
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Daifen Chen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China.
| |
Collapse
|
7
|
Gao X, Zhang S, Wang P, Jaroniec M, Zheng Y, Qiao SZ. Urea catalytic oxidation for energy and environmental applications. Chem Soc Rev 2024; 53:1552-1591. [PMID: 38168798 DOI: 10.1039/d3cs00963g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Urea is one of the most essential reactive nitrogen species in the nitrogen cycle and plays an indispensable role in the water-energy-food nexus. However, untreated urea or urine wastewater causes severe environmental pollution and threatens human health. Electrocatalytic and photo(electro)catalytic urea oxidation technologies under mild conditions have become promising methods for energy recovery and environmental remediation. An in-depth understanding of the reaction mechanisms of the urea oxidation reaction (UOR) is important to design efficient electrocatalysts/photo(electro)catalysts for these technologies. This review provides a critical appraisal of the recent advances in the UOR by means of both electrocatalysis and photo(electro)catalysis, aiming to comprehensively assess this emerging field from fundamentals and materials, to practical applications. The emphasis of this review is on the design and development strategies for electrocatalysts/photo(electro)catalysts based on reaction pathways. Meanwhile, the UOR in natural urine is discussed, focusing on the influence of impurity ions. A particular emphasis is placed on the application of the UOR in energy and environmental fields, such as hydrogen production by urea electrolysis, urea fuel cells, and urea/urine wastewater remediation. Finally, future directions, prospects, and remaining challenges are discussed for this emerging research field. This critical review significantly increases the understanding of current progress in urea conversion and the development of a sustainable nitrogen economy.
Collapse
Affiliation(s)
- Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shuai Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
8
|
Chai H, Ma X, Dang Y, Zhang Y, Yue F, Pang X, Wang G, Yang C. Triple roles of Ni(OH) 2 promoting the electrocatalytic activity and stability of Ni 3S 4@Ni(OH) 2 in anion exchange membrane water electrolyzers. J Colloid Interface Sci 2024; 654:66-75. [PMID: 37837852 DOI: 10.1016/j.jcis.2023.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023]
Abstract
Developing high performance and durable electrocatalysts is crucial for the practical application of large-scale water splitting under high current density. Here, we constructed a Mott-Schottky heterojunction bifunctional electrocatalyst coating of Ni3S4 with Ni(OH)2 thin film supported on Ni foam substrate (Ni3S4@Ni(OH)2) for anion exchange membrane water electrolyzers (AEMWEs). Remarkably, the η500 is as low as 274.6 mV toward the hydrogen evolution reaction and 423.8 mV toward the oxygen evolution reaction. AEMWEs deliver a stable performance that achieves current densities of 500 and 1000 mA cm-2 at a cell voltage of 1.84 and 1.95 V, respectively. In particular, the Ni3S4@Ni(OH)2 exhibits durable stability for 100 h at 500 mA cm-2 without significant degradation and uses 0.75 kW·h of electricity less than commercial Ni foam electrode to produce each standard cubic meter of hydrogen gas at 500 mA cm-2. The excellent performance is ascribed to the triple roles of Ni(OH)2, which prevent the inner Ni3S4 from decomposing during the reaction process, promoting the dissociation of water and formation of adsorbed hydrogen intermediate and accelerating electron transfer ability due to the Mott-Schottky heterojunction between Ni(OH)2 and Ni3S4. This work sheds light on the development of advanced bifunctional electrocatalysts based on non-precious transition metals for AEMWEs.
Collapse
Affiliation(s)
- Hongmei Chai
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China
| | - Xu Ma
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China.
| | - Yuechen Dang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China
| | - Yanqun Zhang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China
| | - Feng Yue
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China
| | - Xiangxiang Pang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China
| | - Guangqing Wang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China.
| | - Chunming Yang
- College of Chemistry & Chemical Engineering, Yan'an University, Yan'an Key Laboratory of Green Hydrogen Energy and Biomass Catalytic Conversion, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
9
|
Zhou L, Feng D, Liu C, Sun Y, Fu Y, Ma T. Amorphous Ni(OH) 2 -Ni 3 S 2 /NF nano-flower heterostructure catalyst promotes efficient urea assisted overall water splitting. Chem Asian J 2023:e202300980. [PMID: 38109145 DOI: 10.1002/asia.202300980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Urea assisted overall water splitting represents a cost-effective and efficient technology for hydrogen production, which not only obviates the generation of explosive H2 and O2 gas mixture but also minimizes the energy cost for the water splitting. In this study, we employed a one-pot hydrothermal method to directly synthesize Ni(OH)2 -Ni3 S2 /NF hybrid nanoflowers on a nickel foam (NF) substrate, resulting in efficient and stable bi-functional electrocatalysts for urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Under alkaline conditions, the Ni(OH)2 -Ni3 S2 /NF catalyst exhibits low voltage requirements of 1.346 V and -0.014 V vs. RHE with a current density of 10 mA cm-2 for UOR and HER, respectively. Furthermore, when employing the Ni(OH)2 -Ni3 S2 /NF catalyst as both anode and cathode for urea-assisted overall water splitting, it requires a cell voltage of merely 1.396 V with a current density of 10 mA cm-2 , which is notably lower than the voltage required for complete water decomposition at the same current density (1.568 V vs. RHE). The one-step synthesis of the Ni(OH)2 -Ni3 S2 /NF catalyst lays a foundation for further exploration of other transition metal complexes as dual-function electrocatalysts, enabling energy-efficient electrolytic hydrogen production and the treatment of urea-rich wastewater.
Collapse
Affiliation(s)
- Lixue Zhou
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Daming Feng
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Chang Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Ying Sun
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Yang Fu
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| |
Collapse
|
10
|
Liu Y, Chen Q, Zhong Q. Anchoring Ni 3S 2/Cr(OH) 3 hybrid nanospheres on Ti 3C 2@NF dual substrates by ion exchange for efficient urea electrolysis. NANOSCALE 2023; 15:14131-14139. [PMID: 37584169 DOI: 10.1039/d3nr02524a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Developing efficient nonprecious-metal urea oxidation reaction (UOR) electrocatalysts will promote large-scale hydrogen production via electrolytic water splitting. Therefore, on dual substrates consisting of nickel foam (NF) with high-conductivity Ti3C2 adsorbed on it, Ni3S2/Cr(OH)3 nanosphere catalysts were facilely in situ constructed at room temperature via an ion-exchange method. The optimized electrode exhibits obvious advantages and excellent stability in a solution of 1 M KOH containing 0.5 M urea, with an overpotential of 130 mV at 10 mA cm-2 for the UOR. The two-electrode system requires merely 1.52 V to attain a current density of 10 mA cm-2, and shows excellent durability over 60 h. The superior performance of the electrode is mainly attributed to the following three aspects: (i) the introduction of amorphous Cr(OH)3, which improves the catalyst morphology and regulates the electronic structure of the active metal; (ii) the synergistic catalysis by the defect-rich Ni3S2 and Cr(OH)3 on the nanospheres; (iii) the large adsorption surface and excellent electrical conductivity provided by the dual substrates; and (iv) the mild preparation process, which provides excellent stability for the electrode. The ingenious structural design and simple preparation method of Ni3S2/Cr(OH)3-Ti3C2@NF provide ideas for the development of low-cost, high-efficiency UOR electrodes with industrial application prospects.
Collapse
Affiliation(s)
- Yifeng Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qianqiao Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Qin Zhong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
11
|
Zhao L, Du S, Gong R, Jia W, Chen Z, Ren Z. CoO–Co Heterojunction Covered with Carbon Enables Highly Efficient Integration of Hydrogen Evolution and 5-Hydroxymethylfurfural Oxidation. Molecules 2023; 28:molecules28073040. [PMID: 37049803 PMCID: PMC10096219 DOI: 10.3390/molecules28073040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
The renewable-energy-driven integration of hydrogen production and biomass conversion into value-added products is desirable for the current global energy transition, but still a challenge. Herein, carbon-coated CoO–Co heterojunction arrays were built on copper foam (CoO–Co@C/CF) by the carbothermal reduction to catalyze the hydrogen evolution reaction (HER) coupled with a 5-hydroxymethylfurfural electrooxidation reaction (HMFEOR). The electronic modulation induced by the CoO–Co heterojunction endows CoO–Co@C/CF with a powerful catalytic ability. CoO–Co@C/CF is energetic for HER, yielding an overpotential of 69 mV at 10 mA·cm−1 and Tafel slope of 58 mV·dec−1. Meanwhile, CoO–Co@C/CF delivers an excellent electrochemical activity for the selective conversion from HMF into 2,5-furandicarboxylic acid (FDCA), achieving a conversion of 100%, FDCA yield of 99.4% and faradaic efficiency of 99.4% at the lower oxidation potential, along with an excellent cycling stability. The integrated CoO–Co@C/CF||CoO–Co@C/CF configuration actualizes the H2O–HMF-coupled electrolysis at a satisfactory cell voltage of 1.448 V at 10 mA·cm−2. This work highlights the feasibility of engineering double active sites for the coupled electrolytic system.
Collapse
|
12
|
Zhang N, Li Y, Zhang R, Huang S, Wang F, Tang M, Liu J. Tiny Ni3S2 boosting MoS2 hydrogen evolution in alkali by enlarging coupling boundaries and stimulating basal plane. J Colloid Interface Sci 2023; 642:479-487. [PMID: 37023519 DOI: 10.1016/j.jcis.2023.03.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The relatively slow reaction kinetics of the hydrogen evolution reaction (HER) by water electrolysis in alkali hinder its large-scale industrial production. To improve the HER activity in alkaline media, a novel Ni3S2/MoS2/CC catalytic electrode was synthesized by a simple two-step hydrothermal method in this work. The modification of MoS2 by Ni3S2 could facilitate the adsorption and dissociation of water, thus accelerating the alkaline HER kinetics. Moreover, the unique morphology of small Ni3S2 nanoparticles grown on MoS2 nanosheets not only increased the interface coupling boundaries, which acted as the most efficient active sites for the Volmer step in alkaline medium, but also sufficiently activated the MoS2 basal plane, thus providing more active sites. Consequently, Ni3S2/MoS2/CC only needed overpotentials of 189.4 and 240 mV to drive current densities of 100 and 300 mA·cm-2, respectively. More importantly, its catalytic performance of Ni3S2/MoS2/CC even exceeded that of Pt/C at a high current density after 261.7 mA·cm-2 in 1.0 M KOH.
Collapse
|
13
|
Zhao X, Liu M, Wang Y, Xiong Y, Yang P, Qin J, Xiong X, Lei Y. Designing a Built-In Electric Field for Efficient Energy Electrocatalysis. ACS NANO 2022; 16:19959-19979. [PMID: 36519975 DOI: 10.1021/acsnano.2c09888] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To utilize intermittent renewable energy as well as achieve the goals of peak carbon dioxide emissions and carbon neutrality, various electrocatalytic devices have been developed. However, the electrocatalytic reactions, e.g., hydrogen evolution reaction/oxygen evolution reaction in overall water splitting, polysulfide conversion in lithium-sulfur batteries, formation/decomposition of lithium peroxide in lithium-oxygen batteries, and nitrate reduction reaction to degrade sewage, suffer from sluggish kinetics caused by multielectron transfer processes. Owing to the merits of accelerated charge transport, optimized adsorption/desorption of intermediates, raised conductivity, regulation of the reaction microenvironment, as well as ease to combine with geometric characteristics, the built-in electric field (BIEF) is expected to overcome the above problems. Here, we give a Review about the very recent progress of BIEF for efficient energy electrocatalysis. First, the construction strategies and the characterization methods (qualitative and quantitative analysis) of BIEF are summarized. Then, the up-to-date overviews of BIEF engineering in electrocatalysis, with attention on the electron structure optimization and reaction microenvironment modulation, are analyzed and discussed in detail. In the end, the challenges and perspectives of BIEF engineering are proposed. This Review gives a deep understanding on the design of electrocatalysts with BIEF for next-generation energy storage and electrocatalytic devices.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Yu Xiong
- School of Chemistry and Chemical Engineering, Central South University, Changsha410083, China
| | - Peiyao Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Jiaqian Qin
- Research Unit of Advanced Materials for Energy Storage, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok10330, Thailand
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha410083, China
| |
Collapse
|