1
|
Li Y, Liu X, Xu J, Chen S. Ruthenium-Based Electrocatalysts for Hydrogen Evolution Reaction: from Nanoparticles to Single Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402846. [PMID: 39072957 DOI: 10.1002/smll.202402846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Benefiting from similar hydrogen bonding energy to Pt and much lower price compare with Pt, Ru based catalysts are promising candidates for electrocatalytic hydrogen evolution reaction (HER). The catalytic activity of Ru nanoparticles can be enhanced through improving their dispersion by using different supports, and the strong metal supports interaction can further regulate their catalytic performance. In addition, single-atom catalysts (SACs) with almost 100% atomic utilization attract great attention and the coordinative atmosphere of single atoms can be adjusted by supports. Moreover, the syngenetic effects of nanoparticles and single atoms can further improve the catalytic performance of Ru based catalysts. In this review, the progress of Ru based HER electrocatalysts are summarized according to their existing forms, including nanoparticles (NPs), single atoms (SAs) and the combination of both NPs and SAs. The common supports such as carbon materials, metal oxides, metal phosphides and metal sulfides are classified to clarify the metal supports interaction and coordinative atmosphere of Ru active centers. Especially, the possible catalytic mechanisms and the reasons for the improved catalytic performance are discussed from both experimental results and theoretical calculations. Finally, some challenges and opportunities are prospected to facilitate the development of Ru based catalysts for HER.
Collapse
Affiliation(s)
- Yanqiang Li
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Xuan Liu
- School of Chemical Engineering, Dalian University of Technology, Panjin Campus, Panjin, 124221, China
| | - Junlong Xu
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| | - Siru Chen
- School of Material and Chemical Engineering, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China
| |
Collapse
|
2
|
Luo X, Wu Y, Hu H, Wei T, Wu B, Ding J, Liu Q, Luo J, Liu X. Boron-Doped Ti 3C 2T x MXene for Effective and Durable High-Current-Density Ammonia Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403399. [PMID: 39045897 DOI: 10.1002/smll.202403399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/14/2024] [Indexed: 07/25/2024]
Abstract
Ammonia (NH3) synthesis via the nitrate reduction reaction (NO3RR) offers a competitive strategy for nitrogen cycling and carbon neutrality; however, this is hindered by the poor NO3RR performance under high current density. Herein, it is shown that boron-doped Ti3C2Tx MXene nanosheets can highly efficiently catalyze the conversion of NO3RR-to-NH3 at ambient conditions, showing a maximal NH3 Faradic efficiency of 91% with a peak yield rate of 26.2 mgh-1 mgcat. -1, and robust durability over ten consecutive cycles, all of them are comparable to the best-reported results and exceed those of pristine Ti3C2Tx MXene. More importantly, when tested in a flow cell, the designed catalyst delivers a current density of ‒1000 mA cm-2 at a low potential of ‒1.18 V versus the reversible hydrogen electrode and maintains a high NH3 selectivity over a wide current density range. Besides, a Zn-nitrate battery with the catalyst as the cathode is assembled, which achieves a power density of 5.24 mW cm-2 and a yield rate of 1.15 mgh-1 mgcat. -1. Theoretical simulations further demonstrate that the boron dopants can optimize the adsorption and activation of NO3RR intermediates, and reduce the potential-determining step barrier, thus leading to an enhanced NH3 selectivity.
Collapse
Affiliation(s)
- Xia Luo
- Research Institute of Petroleum Exploration & Development, PetroChina, Beijing, 100083, China
| | - Yeyu Wu
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Huihui Hu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Baoshan Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Junyang Ding
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Luo
- ShenSi Lab, Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Longhua District, Shenzhen, 518110, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China
| |
Collapse
|
3
|
Li H, Wang Y, Chen S, Peng F, Gao F. Boosting Electrochemical Reduction of Nitrate to Ammonia by Constructing Nitrate-Favored Active Cu-B Sites on SnS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308182. [PMID: 38308386 DOI: 10.1002/smll.202308182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/13/2024] [Indexed: 02/04/2024]
Abstract
The electrochemical reduction of nitrate to ammonia is an effective method for mitigating nitrate pollution and generating ammonia. To design superior electrocatalysts, it is essential to construct a reaction site with high activity. Herein, a simple two-step method is applied to in situ reduce amorphous copper over boron-doped SnS2 nanosheets(denoted as aCu@B-SnS2-x. DFT calculations reveal the combination of amorphous copper and B-doping strategy can construct Cu-B active twins and introduce sulfur vacancies on the surface of the inert SnS2, the active twins can efficiently adsorb nitrate and forcibly separate oxygen atoms from nitrate under the assistance of the exposed Sn atom, leading to strong nitrate adsorption. Benefiting from this, aCu@B-SnS2-x exhibited an ultrahigh NH3 FE of 94.6% at -0.67 V versus RHE and the highest NH3 yield rate of 0.55 mmol h-1 mg-1 cat (9350 µg h-1 mg-1 cat) at -0.77 V versus RHE under alkaline conditions. Besides, aCu@B-SnS2-x is confirmed to remain active after various stability tests, suggesting the practicality of utilizing aCu@B-SnS2-x in industrial applications. This work highlights the feasibility of enhanced nitrate-to-ammonia conversion efficiency by combining the doping method and amorphous metal.
Collapse
Affiliation(s)
- Heen Li
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Yuanzhe Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| | - Shuheng Chen
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Fei Peng
- Analyses and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao, 066000, P. R. China
| | - Faming Gao
- Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, P. R. China
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Ecological Utilization, Tianjin University of Science & Technology, Tianjin, 300222, P. R. China
| |
Collapse
|
4
|
Wang G, Chen Q, Zhang J, An X, Liu Q, Xie L, Yao W, Sun X, Kong Q. Ru doped NiMoO 4 nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. J Colloid Interface Sci 2024; 661:401-408. [PMID: 38306749 DOI: 10.1016/j.jcis.2024.01.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
The electrocatalytic reduction of nitrite to recyclable ammonia (NH3) is essential to maintain nitrogen balance and meet growing energy requirements. Herein, we report that Ru doped honeycomb NiMoO4 nanosheet with copious oxygen vacancies grown on nickel foam substrate has been prepared by a facile hydrothermal synthesis and immersion process, which can act as an efficient electrocatalyst for NH3 synthesis by reduction of nitrite. By optimizing the concentration of RuCl3 solution, 0.01Ru-NiMoO4/NF possesses excellent NO2-RR performance with NH3 yield of 20249.17 ± 637.42 μg h-1 cm-2 at -0.7 V and FE of 95.56 ± 0.72 % at -0.6 V. When assembled into a Zn-NO2- battery, it provides a remarkable level of power density of 13.89 mW cm-2, outperforming the performance of virtually all previous reports. The efficient adsorption and activation of NO2- over Ru-doped NiMoO4 with oxygen vacancy have been verified by density functional theory calculations, as well as the possible reaction pathway.
Collapse
Affiliation(s)
- Guoguo Wang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Qiuyue Chen
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jing Zhang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xuguan An
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| | - Qian Liu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Lisi Xie
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Weitang Yao
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China.
| | - Qingquan Kong
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan, China; Interdisciplinary Materials Research Center, Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
5
|
Zhou L, Chen X, Zhu S, You K, Wang ZJ, Fan R, Li J, Yuan Y, Wang X, Wang J, Chen Y, Jin H, Wang S, Lv JJ. Two-dimensional Cu Plates with Steady Fluid Fields for High-rate Nitrate Electroreduction to Ammonia and Efficient Zn-Nitrate Batteries. Angew Chem Int Ed Engl 2024; 63:e202401924. [PMID: 38366134 DOI: 10.1002/anie.202401924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/18/2024]
Abstract
Nitrate electroreduction reaction (eNO3 -RR) to ammonia (NH3) provides a promising strategy for nitrogen utilization, while achieving high selectivity and durability at an industrial scale has remained challenging. Herein, we demonstrated that the performance of eNO3 -RR could be significantly boosted by introducing two-dimensional Cu plates as electrocatalysts and eliminating the general carrier gas to construct a steady fluid field. The developed eNO3 -RR setup provided superior NH3 Faradaic efficiency (FE) of 99 %, exceptional long-term electrolysis for 120 h at 200 mA cm-2, and a record-high yield rate of 3.14 mmol cm-2 h-1. Furthermore, the proposed strategy was successfully extended to the Zn-nitrate battery system, providing a power density of 12.09 mW cm-2 and NH3 FE of 85.4 %, outperforming the state-of-the-art eNO3 -RR catalysts. Coupled with the COMSOL multiphysics simulations and in situ infrared spectroscopy, the main contributor for the high-efficiency NH3 production could be the steady fluid field to timely rejuvenate the electrocatalyst surface during the electrocatalysis.
Collapse
Affiliation(s)
- Limin Zhou
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Xueqiu Chen
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Shaojun Zhu
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Kun You
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Zheng-Jun Wang
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Ru Fan
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Jun Li
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Yifei Yuan
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Jichang Wang
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, M4Y1M7, Canada
| | - Yihuang Chen
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| | - Huile Jin
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Shun Wang
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
- Zhejiang Engineering Research Center for Electrochemical Energy Materials and Devices, Institute of New Materials and Industrial Technologies, Wenzhou, Zhejiang, 325035, China
| | - Jing-Jing Lv
- Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
6
|
Fang L, Lu S, Wang S, Yang X, Song C, Yin F, Liu H. Defect engineering on electrocatalysts for sustainable nitrate reduction to ammonia: Fundamentals and regulations. Chemistry 2024; 30:e202303249. [PMID: 37997008 DOI: 10.1002/chem.202303249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a "two birds-one stone" method that targets remediation of NO3 --containing sewage and production of valuable NH3. The exploitation of advanced catalysts with high activity, selectivity, and durability is a key issue for the efficient catalytic performance. Among various strategies for catalyst design, defect engineering has gained increasing attention due to its ability to modulate the electronic properties of electrocatalysts and optimize the adsorption energy of reactive species, thereby enhancing the catalytic performance. Despite previous progress, there remains a lack of mechanistic insights into the regulation of catalyst defects for NO3 - reduction. Herein, this review presents insightful understanding of defect engineering for NO3 - reduction, covering its background, definition, classification, construction, and underlying mechanisms. Moreover, the relationships between regulation of catalyst defects and their catalytic activities are illustrated by investigating the properties of electrocatalysts through the analysis of electronic band structure, charge density distribution, and controllable adsorption energy. Furthermore, challenges and perspectives for future development of defects in NO3RR are also discussed, which can help researchers to better understand the defect engineering in catalysts, and also inspire scientists entering into this promising field.
Collapse
Affiliation(s)
- Ling Fang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Shun Lu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Sha Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohui Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Cheng Song
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Fengjun Yin
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| | - Hong Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, 1400714, Chongqing, China
| |
Collapse
|
7
|
Zhang H, Wang H, Cao X, Chen M, Liu Y, Zhou Y, Huang M, Xia L, Wang Y, Li T, Zheng D, Luo Y, Sun S, Zhao X, Sun X. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312746. [PMID: 38198832 DOI: 10.1002/adma.202312746] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Indexed: 01/12/2024]
Abstract
The excessive enrichment of nitrate in the environment can be converted into ammonia (NH3) through electrochemical processes, offering significant implications for modern agriculture and the potential to reduce the burden of the Haber-Bosch (HB) process while achieving environmentally friendly NH3 production. Emerging research on electrocatalytic nitrate reduction (eNitRR) to NH3 has gained considerable momentum in recent years for efficient NH3 synthesis. However, existing reviews on nitrate reduction have primarily focused on limited aspects, often lacking a comprehensive summary of catalysts, reaction systems, reaction mechanisms, and detection methods employed in nitrate reduction. This review aims to provide a timely and comprehensive analysis of the eNitRR field by integrating existing research progress and identifying current challenges. This review offers a comprehensive overview of the research progress achieved using various materials in electrochemical nitrate reduction, elucidates the underlying theoretical mechanism behind eNitRR, and discusses effective strategies based on numerous case studies to enhance the electrochemical reduction from NO3 - to NH3. Finally, this review discusses challenges and development prospects in the eNitRR field with an aim to guide design and development of large-scale sustainable nitrate reduction electrocatalysts.
Collapse
Affiliation(s)
- Haoran Zhang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Haijian Wang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Xiqian Cao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Mengshan Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Yuelong Liu
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Yingtang Zhou
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, National Engineering Research Center for Marine Aquaculture, Zhejiang Ocean University, Zhoushan, Zhejiang, 316004, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, 08860, Spain
| | - Yan Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Tingshuai Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Dongdong Zheng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yongsong Luo
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Xue Zhao
- Faculty of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650092, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
8
|
Askari MJ, Kallick JD, McCrory CCL. Selective Reduction of Aqueous Nitrate to Ammonium with an Electropolymerized Chromium Molecular Catalyst. J Am Chem Soc 2024; 146:7439-7455. [PMID: 38465608 DOI: 10.1021/jacs.3c12783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Nitrate (NO3-) is a common nitrogen-containing contaminant in agricultural, industrial, and low-level nuclear wastewater that causes significant environmental damage. In this work, we report a bioinspired Cr-based molecular catalyst incorporated into a redox polymer that selectively and efficiently reduces aqueous NO3- to ammonium (NH4+), a desirable value-added fertilizer component and industrial precursor, at rates of ∼0.36 mmol NH4+ mgcat-1 h-1 with >90% Faradaic efficiency for NH4+. The NO3- reduction reaction occurs through a cascade catalysis mechanism involving the stepwise reduction of NO3- to NH4+ via observed NO2- and NH2OH intermediates. To our knowledge, this is one of the first examples of a molecular catalyst, homogeneous or heterogenized, that is reported to reduce aqueous NO3- to NH4+ with rates and Faradaic efficiencies comparable to those of state-of-the-art solid-state electrocatalysts. This work highlights a promising and previously unexplored area of electrocatalyst research using polymer-catalyst composites containing complexes with oxophilic transition metal active sites for electrochemical nitrate remediation with nutrient recovery.
Collapse
Affiliation(s)
- Maiko J Askari
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jeremy D Kallick
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles C L McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Xiang J, Zhao H, Chen K, Li X, Li X, Chu K. Atomically dispersed Pd on defective BN nanosheets for nitrite electroreduction to ammonia. J Colloid Interface Sci 2024; 653:390-395. [PMID: 37722167 DOI: 10.1016/j.jcis.2023.09.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Electrocatalytic NO2- reduction to NH3 (NO2RR) offers a prospective strategy to concurrently achieve polluted NO2- removal and effective NH3 electrosynthesis. In this work, we report atomically dispersed Pd on defective BN nanosheets (Pd1/BN) as an efficient catalyst for the NO2RR, achieving the highest NH3-Faradaic efficiency of 91.7% with an NH3 yield rate of 347.1 μmol h-1 cm-2 at -0.6 V vs. RHE, superior to those of most previously reported electrocatalysts. Theoretical computations reveal the isolated Pd sites as catalytic centers to selectively adsorb NO2- and accelerate NO2--to-NH3 hydrogenation process with a minimized reaction barrier, eventually contributing to the considerably enhanced NO2RR selectivity and activity of Pd1/BN.
Collapse
Affiliation(s)
- Jiaqi Xiang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hongyan Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xingang Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Applied Catalysis Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
10
|
Yang M, Meng G, Li H, Wei T, Liu Q, He J, Feng L, Sun X, Liu X. Bifunctional bimetallic oxide nanowires for high-efficiency electrosynthesis of 2,5-furandicarboxylic acid and ammonia. J Colloid Interface Sci 2023; 652:155-163. [PMID: 37591077 DOI: 10.1016/j.jcis.2023.08.079] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/19/2023]
Abstract
It is an appealing avenue for electrosyntheis of high-valued chemicals at both anode and cathode by coupling 5-hydroxymethylfurfural (HMF) oxidation and nitrate reduction reactions simultaneously, while the development such bifunctional electrocatalysts is still in its infancy with dissatisfied selectivity and low yield rate. Here, we first report that Zn-doped Co3O4 nanowires array can be served as an efficient and robust dual-functional catalyst for HMF oxidation and nitrate reduction at ambient conditions. Specifically, the catalyst shows a faradaic efficiency of 91 % and a yield rate of 241.2 μmol h-1 cm-2 for 2,5-furandicarboxylic acid formation together with a high conversion of nearly 100 % at a potential of 1.40 V. It also displays good cycling stability. Besides, the catalyst is capable of catalyzing the reduction of nitrate to NH3, giving a maximal faradaic efficiency of 92 % and a peak NH3 yield rate of 4.65 mg h-1 cm-2 at a potential of -0.70 V. These results surpass those obtained using pristine Co3O4 and are comparable to those of state-of-the-art electrocatalysts. Moreover, the catalyst is further employed as the cathode catalyst to assemble a Zn-nitrate battery, giving a peak power density of 5.24 mW cm-2 and a high yield rate of 0.72 mg h-1 cm-2. Theoretical simulations further reveal that Zn-doping favors the adsorption and dissociation of nitrate and HMF species and reduces the energy barrier as well. Our work demonstrates the potential interest of Co3O4-based materials for the highly selective production of valuable feedstocks via ambient electrolysis.
Collapse
Affiliation(s)
- Miaosen Yang
- School of Chemical Engineering, Northeast Electric Power University, Jilin 132012, China; Nanchang Institute of Technology, Nanchang 330044, China
| | - Ge Meng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
| | - Hongyi Li
- Xinjiang University State Key Laboratory of Chemistry & Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830046, Xinjiang, China; Guangzhou Panyu Polytechnic, Guangzhou 511483, Guangdong, China.
| | - Tianran Wei
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Jia He
- Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xijun Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resources, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
11
|
Wang Y, Cao Y, Hai Y, Wang X, Su S, Ding W, Liu Z, Li X, Luo M. Metal-organic framework-derived Cu nanoparticle binder-free monolithic electrodes with multiple support structures for electrocatalytic nitrate reduction to ammonia. Dalton Trans 2023; 52:11213-11221. [PMID: 37522833 DOI: 10.1039/d3dt01412f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Electrocatalytic nitrate reduction to ammonia, which removes nitrates from aquatic ecosystems, is a potential alternative to the classical Haber-Bosch process. Nevertheless, the selectivity of ammonia is often affected by the toxic by-product nitrite. Here, the polyhedral-supported Cu nanoparticle binder-free monolithic electrode (Cu-BTC-Cu) is synthesized by the in situ electroreduction of Cu metal-organic framework (Cu-MOF) precursors. The Cu-BTC-Cu displays a high ammonia yield of 4.00 mg h-1 cm-2cat and a faradaic efficiency of 83.8% in 0.05 M K2SO4 (pH = 7), greatly outperforming the rod-supported (Cu-BTEC-Cu) and unsupported (Cu-BDC-Cu) Cu nanoparticle monolithic electrodes. Impressively, the Cu-BTC-Cu can inhibit significantly the release of by-product NO2- and present favourable stability after 10 consecutive cycles. These preeminent properties can be attributed to the polyhedral structure, which enables better dispersion of Cu nanoparticles and brings more active sites. Moreover, the reaction mechanism of Cu-BTC-Cu is analysed by electrochemical in situ characterization and several key intermediates are captured. This work provides new insights into the modification of the electrocatalytic nitrate reduction activity of Cu-based catalysts and ideas for the design of high-efficiency electrodes.
Collapse
Affiliation(s)
- Yingying Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Yan Hai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Xinyan Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, P. R. China.
| |
Collapse
|
12
|
Liu Y, Yao XM, Liu X, Liu Z, Wang YQ. Cu 2+1O/Ag Heterostructure for Boosting the Electrocatalytic Nitrate Reduction to Ammonia Performance. Inorg Chem 2023; 62:7525-7532. [PMID: 37133541 DOI: 10.1021/acs.inorgchem.3c00857] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrocatalytic nitrate reduction reaction (ENO3RR) is an alternative, sustainable, and environmentally friendly value-added NH3 synthesis method under ambient conditions relative to the traditional Haber-Bosch process; however, its low NH3 yield, low Faradaic efficiency (FE), low selectivity, and low conversion rate severely restrict the development. In this work, a Cu2+1O/Ag-CC heterostructured electrocatalyst was successfully fabricated by constructing a heterogeneous interface between Cu2+1O and Ag for selective electrochemical nitrate-to-ammonia conversion. The construction of the heterogeneous interface effectively promotes the synergistic effect of the catalytically active components Cu2+1O and Ag, which enhances the material conductivity, accelerates the interfacial electron transfer, and exposes more active sites, thus improving the performance of ENO3RR. Such Cu2+1O/Ag-CC manifests a high NH3 yield of 2.2 mg h-1 cm-2 and a notable ammonia FE of 85.03% at the optimal applied potential of -0.74 V vs RHE in a relatively low concentration of 0.01 M NO3--containing 0.1 M KOH. Moreover, it shows excellent electrochemical stability during the cycle tests. Our study not only provides an efficient catalyst for ammonia electro-synthesis from ENO3RR but also an effective strategy for the construction of ENO3RR electrocatalysts for electrocatalytic applications.
Collapse
Affiliation(s)
- Yang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Xiao-Man Yao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Xu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot 010021, China
| |
Collapse
|
13
|
Chen M, Zhuang S, Cheng J, Miao J, Tai X, Gu Y, Qin Z, Zhang J, Tang Y, Sun Y, Wan P. Nano-Polycrystalline Cu Layer Interlaced with Ti 3+-Self-Doped TiO 2 Nanotube Arrays as an Electrocatalyst for Reduction of Nitrate to Ammonia. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16680-16691. [PMID: 36961955 DOI: 10.1021/acsami.2c22399] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical nitrate reduction reaction (NO3RR) is considered as a promising strategy to degrade nitrate-containing wastewater and synthesize recyclable ammonia at atmospheric pressure and room temperature. In this work, the copper oxides-derived nano-polycrystalline Cu (NPC Cu) was integrated with Ti3+-self-doped TiO2 nanotube arrays (NTA) to fabricate the NPC Cu/H-TiO2 NTA. Ti3+-self-doped TiO2 NTAs and the NPC Cu facilitate electron transfer and mass transportation and create abundant active sites. The unique nanostructure in which Cu nano-polycrystals interlace with the TiO2 nanotube accelerates the electron transfer from the substrate to surface NPC Cu. The density functional theory calculations confirm that the built-in electric field between Cu and TiO2 improves the adsorption characteristic of the NPC Cu/H-TiO2 NTA, thereby converting the endothermic NO3- adsorption step into an exothermic process. Therefore, the high NO3- conversion of 98.97%, the Faradic efficiency of 95.59%, and the ammonia production yield of 0.81 mg cm-2 h-1 are achieved at -0.45 V vs reversible hydrogen electrode in 10 mM NaNO3 (140 mg L-1)-0.1 M Na2SO4. This well-designed NPC Cu/H-TiO2 NTA as an effective electrocatalyst for the 8e- NO3RR possesses promising potential in the applications of ammonia production.
Collapse
Affiliation(s)
- Mingfei Chen
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
- Changchun Green Drive Hydrogen Technology Co., Ltd, China-Korea Building, No. 1577 Jinhui Road, China-Kore (Changchun) International Cooperation Demonstration Zone, Changchun 130102, China
| | - Shuxian Zhuang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
- Carbon Neutrality Research Center, State Power Investment Corporation Central Research Institute, South Park, Beijing Future Science Park, Changping District, Beijing 102209, China
| | - Jinlu Cheng
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Jinyuan Miao
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Xuefeng Tai
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Yinghua Gu
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Zhiwei Qin
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Jinpeng Zhang
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Yang Tang
- Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Yanzhi Sun
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| | - Pingyu Wan
- National Fundamental Research Laboratory of New Hazardous Chemicals Assessment & Accident Analysis, Beijing University of Chemical Technology, Number 15, Northeast Road, Chaoyang District, Beijing 100029, China
| |
Collapse
|
14
|
Zhang G, Li X, Chen K, Guo Y, Ma D, Chu K. Tandem Electrocatalytic Nitrate Reduction to Ammonia on MBenes. Angew Chem Int Ed Engl 2023; 62:e202300054. [PMID: 36734975 DOI: 10.1002/anie.202300054] [Citation(s) in RCA: 65] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
We demonstrate the great feasibility of MBenes as a new class of tandem catalysts for electrocatalytic nitrate reduction to ammonia (NO3 RR). As a proof of concept, FeB2 is first employed as a model MBene catalyst for the NO3 RR, showing a maximum NH3 -Faradaic efficiency of 96.8 % with a corresponding NH3 yield of 25.5 mg h-1 cm-2 at -0.6 V vs. RHE. Mechanistic studies reveal that the exceptional NO3 RR activity of FeB2 arises from the tandem catalysis mechanism, that is, B sites activate NO3 - to form intermediates, while Fe sites dissociate H2 O and increase *H supply on B sites to promote the intermediate hydrogenation and enhance the NO3 - -to-NH3 conversion.
Collapse
Affiliation(s)
- Guike Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yali Guo
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng, 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
15
|
Chen K, Wang J, Zhang H, Ma D, Chu K. Self-Tandem Electrocatalytic NO Reduction to NH 3 on a W Single-Atom Catalyst. NANO LETTERS 2023; 23:1735-1742. [PMID: 36786441 DOI: 10.1021/acs.nanolett.2c04444] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We design single-atom W confined in MoO3-x amorphous nanosheets (W1/MoO3-x) comprising W1-O5 motifs as a highly active and durable NORR catalyst. Theoretical and operando spectroscopic investigations reveal the dual functions of W1-O5 motifs to (1) facilitate the activation and protonation of NO molecules and (2) promote H2O dissociation while suppressing *H dimerization to increase the proton supply, eventually resulting in a self-tandem NORR mechanism of W1/MoO3-x to greatly accelerate the protonation energetics of the NO-to-NH3 pathway. As a result, W1/MoO3-x exhibits the highest NH3-Faradaic efficiency of 91.2% and NH3 yield rate of 308.6 μmol h-1 cm-2, surpassing that of most previously reported NORR catalysts.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Jiaxin Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Hu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
16
|
Guo H, Li M, Yang Y, Luo R, Liu W, Zhang F, Tang C, Yang G, Zhou Y. Self-Supported Pd Nanorod Arrays for High-Efficient Nitrate Electroreduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207743. [PMID: 36683224 DOI: 10.1002/smll.202207743] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Electrochemical nitrate (NO3 - ) reduction to ammonia (NH3 ) offers a promising pathway to recover NO3 - pollutants from industrial wastewater that can balance the nitrogen cycle and sustainable green NH3 production. However, the efficiency of electrocatalytic NO3 - reduction to NH3 synthesis remains low for most of electrocatalysts due to complex reaction processes and severe hydrogen precipitation reaction. Herein, high performance of nitrate reduction reaction (NO3 - RR) is demonstrated on self-supported Pd nanorod arrays in porous nickel framework foam (Pd/NF). It provides a lot of active sites for H* adsorption and NO3 - activation leading to a remarkable NH3 yield rate of 1.52 mmol cm-2 h-1 and a Faradaic efficiency of 78% at -1.4 V versus RHE. Notably, it maintains a high NH3 yield rate over 50 cycles in 25 h showing good stability. Remarkably, large-area Pd/NF electrode (25 cm2 ) shows a NH3 yield of 174.25 mg h-1 , be promising candidate for large-area device for industrial application. In situ FTIR spectroscopy and density functional theory calculations analysis confirm that the enrichment effect of Pd nanorods encourages the adsorption of H species for ammonia synthesis following a hydrogenation mechanism. This work brings a useful strategy for designing NO3 - RR catalysts of nanorod arrays with customizable compositions.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Mengyue Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Yuantao Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Rui Luo
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Wei Liu
- XJTU-Oxford International Joint Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 7010049, China
| | - Fengying Zhang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Chun Tang
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
| | - Guidong Yang
- XJTU-Oxford International Joint Research Laboratory of Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 7010049, China
| | - Ying Zhou
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
- School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Tianfu Yongxing Laboratory, Chengdu, 611130, China
| |
Collapse
|
17
|
Liu X, Xie T, Cai Z, Li Z, Zhang L, Fan X, Zhao D, Sun S, Luo Y, Liu Q, Sun X. Fe3C nanoparticles decorated 3D nitrogen-doped carbon foam as a highly efficient electrocatalyst for nitrate reduction to ammonia. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
18
|
Ding J, Hou X, Qiu Y, Zhang S, Liu Q, Luo J, Liu X. Iron-doping strategy promotes electroreduction of nitrate to ammonia on MoS2 nanosheets. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
19
|
Chen K, Shen P, Zhang N, Ma D, Chu K. Electrocatalytic NO Reduction to NH 3 on Mo 2C Nanosheets. Inorg Chem 2023; 62:653-658. [PMID: 36594725 DOI: 10.1021/acs.inorgchem.2c03714] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrocatalytic reduction of NO to NH3 (NORR) emerges as a promising route for achieving harmful NO treatment and sustainable NH3 generation. In this work, we first report that Mo2C is an active and selective NORR catalyst. The developed Mo2C nanosheets deliver a high NH3 yield rate of 122.7 μmol h-1 cm-2 with an NH3 Faradaic efficiency of 86.3% at -0.4 V. Theoretical computations unveil that the surface-terminated Mo atoms on Mo2C can effectively activate NO, promote protonation energetics, and suppress proton adsorption, resulting in high NORR activity and selectivity of Mo2C.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Nana Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
20
|
Li X, Shen P, Li X, Ma D, Chu K. Sub-nm RuO x Clusters on Pd Metallene for Synergistically Enhanced Nitrate Electroreduction to Ammonia. ACS NANO 2023; 17:1081-1090. [PMID: 36630658 DOI: 10.1021/acsnano.2c07911] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical nitrate reduction to ammonia reaction (NO3RR) has emerged as an appealing route for achieving both wastewater treatment and ammonia production. Herein, sub-nm RuOx clusters anchored on a Pd metallene (RuOx/Pd) are reported as a highly effective NO3RR catalyst, delivering a maximum NH3-Faradaic efficiency of 98.6% with a corresponding NH3 yield rate of 23.5 mg h-1 cm-2 and partial a current density of 296.3 mA cm-2 at -0.5 V vs RHE. Operando spectroscopic characterizations combined with theoretical computations unveil the synergy of RuOx and Pd to enhance the NO3RR energetics through a mechanism of hydrogen spillover and hydrogen-bond interactions. In detail, RuOx activates NO3- to form intermediates, while Pd dissociates H2O to generate *H, which spontaneously migrates to the RuOx/Pd interface via a hydrogen spillover process. Further hydrogen-bond interactions between spillovered *H and intermediates makes spillovered *H desorb from the RuOx/Pd interface and participate in the intermediate hydrogenation, contributing to the enhanced activity of RuOx/Pd for NO3--to-NH3 conversion.
Collapse
Affiliation(s)
- Xiaotian Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Peng Shen
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Xingchuan Li
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
| |
Collapse
|